Bering Land Bridge National Preserve

GRI Ancillary Map Information Document

Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic Data for Bering Land Bridge National Preserve

bela_geology.pdf

Version: 6/25/2015
Geologic Resources Inventory Map Document for Bering Land Bridge National Preserve

Table of Contents

Geologic Resources Inventory Map Document ... 1
About the NPS Geologic Resources Inventory Program .. 2
GRI Digital Maps and Source Map Citations ... 4
Map Unit List .. 5
Map Unit Descriptions .. 7

Olj · Lost Jim Basalt (Holocene) .. 7
Qs · Surficial deposits, undivided (Quaternary) ... 7
QTV · Weathered volcanic rocks, undivided (Quaternary and Tertiary) 7
TKs · Carbonate-rich conglomerate and sandstone; mudstone, siltstone and coal (Tertiary and Cretaceous) ... 8
TKV · Felsic volcanic rocks (Tertiary and Cretaceous) ... 10
Ktg · Tin-bearing granitic stocks (Late Cretaceous) ... 10
Kgu · Granitic rocks, undifferentiated (Cretaceous) ... 10
Kds · Dikes and stocks (Cretaceous) ... 10
Kp · Pargun pluton (Cretaceous) .. 11
Kg · Kigluaik granite (Cretaceous) .. 12
Ks · Stocks, undifferentiated (Cretaceous) .. 12
Kku · Kugruk pluton (Cretaceous) .. 12
Kw · Windy Creek pluton (Cretaceous) .. 12
Kd · Darby pluton (Cretaceous) .. 13
Kbk · Bendeleben and Kuzitirn plutons (Cretaceous) .. 13
MZPZm · Metamorphosed mafic rocks and serpentinite (Mesozoic and Paleozoic?) 13
Jt · Spruce Creek tonalite (Jurassic) ... 14
PZI · Limestone (Paleozoic) .. 15
PZp · Phyllite and argillite (Paleozoic) ... 15
PZnp · Metagabbro and metasediments (Paleozoic?) .. 15
PZm · Marble, undivided (Paleozoic) .. 15
PZd · Dolostone, undivided (Paleozoic) ... 16
PZgb · Metagabbro (Paleozoic) .. 16
PZPRI · Metalimestone (Paleozoic and Proterozoic?) .. 17
PZPRt · Metasiltstone and phyllite (Paleozoic and Proterozoic?) 17
PZPrH · High-grade metasedimentary and metagneous rocks (Paleozoic and Proterozoic) .. 18
PZPrM · Marble (Paleozoic to Proterozoic?) .. 19
PZPrG · Gneiss and orthogneiss (Paleozoic? and Proterozoic?) 19
MI · Limestone, dolomitic limestone, and marble (Mississippian) 19
Ds · Pelitic schist (Devonian?) .. 20
Dcs · Pelitic, calcareous, and graphitic schist (Devonian) .. 20
Ddm · Dolostone, metalimestone, and marble (Devonian) ... 22
Dg · Granitic orthogneiss (Devonian) .. 22
Df · Felsic schist (Devonian) .. 23
DSI · Limestone (Devonian and (or) Silurian) ... 23
DOX · Mixed marble, graphitic metasileceous rock, and schist (Devonian to Ordovician) .. 23
DObm · Black metalimestone and marble (Devonian to Ordovician) 25
DCs · Calcareous schist of Kwiniuk Mountain (Devonian to Cambrian) 26
Sd · Dolostone (Silurian) .. 26

2015 NPS Geologic Resources Inventory Program
SOdI - Dark limestone (Silurian and Upper Ordovician) .. 27
SOul - Limestone and dolostone, undifferentiated (Silurian and Ordovician) 27
Ocs - Casadepaga Schist (Ordovician) .. 28
Oim - Impure chlorite marble (Ordovician) ... 29
Ols - Limestone and shale (Ordovician) .. 29
Od - Dolostone (Ordovician) ... 30
O1 - Limestone (Ordovician) .. 30
Oal - Argillaceous limestone and limestone (Ordovician) ... 31
OPRI - Limestone and dolomitic limestone (Ordovician to Proterozoic) 32
OPRh - Sandstone, siltstone, and limestone (Ordovician to Proterozoic) 33
OPRi - Phyllite (Ordovician to Proterozoic) ... 33
PRm - Metagranitic rocks (Late Proterozoic) .. 34
PRo - Orthogneiss (Proterozoic) ... 34
PRv - Metavolcanic rocks (Proterozoic) ... 34

GRI Source Map Information ... 35
Bedrock Geologic Map - Seward Peninsula (SIM-3131). .. 35
 SIM-3131 Correlation of Map Units .. 35
 SIM-3131 Index Map, ... 36
 SIM-3131 Map Legend ... 36
 SIM-3131 Report ... 36
 SIM-3131 References .. 37
Bedrock Geologic Map Data - Seward Peninsula (OF-2009-1254) 50
 OF-2009-1254 GIS Data .. 50
 OF-2009-1254 References ... 50
ARDF Bendeleben Quadrangle (OF-99-3321) ... 51
 OF-99-3321 ARDF Report ... 51
 OF-99-3321 ARDF Data .. 51
 OF-99-3321 Index Map ... 51
 OF-99-3321 Mineral Occurrence Map ... 52
 OF-99-3321 References ... 52
ARDF Kotzebue Quadrangle (OF-99-579) .. 58
 OF-99-579 ARDF Report ... 58
 OF-99-579 ARDF Data .. 58
 OF-99-579 Index Map .. 58
 OF-99-579 Mineral Occurrence Map .. 59
 OF-99-579 References .. 59
ARDF Teller Quadrangle (OF-98-3281) .. 61
 OF-98-3281 ARDF Report ... 61
 OF-98-3281 ARDF Data .. 61
 OF-98-3281 Index Map ... 61
 OF-98-3281 Mineral Occurrence Map ... 62
 OF-98-3281 References ... 62
Alaska Radiometric Ages (Unpublished) .. 74
 Alaska Radiometric Ages Data .. 74

GRI Digital Data Credits .. 75
This document has been developed to accompany the digital geologic-GIS data developed by the Geologic Resources Inventory (GRI) program for Bering Land Bridge National Preserve, Alaska (BELA).

Attempts have been made to reproduce all aspects of the original source products, including the geologic units and their descriptions, geologic cross sections, the geologic report, references and all other pertinent images and information contained in the original publication.

National Park Service (NPS) Geologic Resources Inventory (GRI) Program staff have assembled the digital geologic-GIS data that accompanies this document.

For information about the status of GRI digital geologic-GIS data for a park contact:

Tim Connors
Geologist/GRI Mapping Contact
National Park Service Geologic Resources Division
P.O. Box 25287
Denver, CO 80225-0287
phone: (303) 969-2093
fax: (303) 987-6792
e-mail: Tim_Connors@nps.gov

For information about using GRI digital geologic-GIS data contact:

Stephanie O'Meara
Geologist/GIS Specialist/Data Manager
Colorado State University Research Associate, Cooperator to the National Park Service
1201 Oak Ridge Drive, Suite 200
Fort Collins, CO 80525
phone: (970) 491-6655
fax: (970) 225-3597
e-mail: stephanie.omeara@colostate.edu
About the NPS Geologic Resources Inventory Program

Background

Recognizing the interrelationships between the physical (geology, air, and water) and biological (plants and animals) components of the Earth is vital to understanding, managing, and protecting natural resources. The Geologic Resources Inventory (GRI) helps make this connection by providing information on the role of geology and geologic resource management in parks.

Geologic resources for management consideration include both the processes that act upon the Earth and the features formed as a result of these processes. Geologic processes include: erosion and sedimentation; seismic, volcanic, and geothermal activity; glaciation, rockfalls, landslides, and shoreline change. Geologic features include mountains, canyons, natural arches and bridges, minerals, rocks, fossils, cave and karst systems, beaches, dunes, glaciers, volcanoes, and faults.

The Geologic Resources Inventory aims to raise awareness of geology and the role it plays in the environment, and to provide natural resource managers and staff, park planners, interpreters, researchers, and other NPS personnel with information that can help them make informed management decisions.

The GRI team, working closely with the Colorado State University (CSU) Department of Geosciences and a variety of other partners, provides more than 270 parks with a geologic scoping meeting, digital geologic-GIS map data, and a park-specific geologic report.

Products

Scoping Meetings: These park-specific meetings bring together local geologic experts and park staff to inventory and review available geologic data and discuss geologic resource management issues. A summary document is prepared for each meeting that identifies a plan to provide digital map data for the park.

Digital Geologic Maps: Digital geologic maps reproduce all aspects of traditional paper maps, including notes, legend, and cross sections. Bedrock, surficial, and special purpose maps such as coastal or geologic hazard maps may be used by the GRI to create digital Geographic Information Systems (GIS) data and meet park needs. These digital GIS data allow geologic information to be easily viewed and analyzed in conjunction with a wide range of other resource management information data.

For detailed information regarding GIS parameters such as data attribute field definitions, attribute field codes, value definitions, and rules that govern relationships found in the data, refer to the NPS Geology-GIS Data Model document available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm

Geologic Reports: Park-specific geologic reports identify geologic resource management issues as well as features and processes that are important to park ecosystems. In addition, these reports present a brief geologic history of the park and address specific properties of geologic units present in the park.

For a complete listing of Geologic Resource Inventory products and direct links to the download site visit the GRI publications webpage http://www.nature.nps.gov/geology/inventory/gre_publications.cfm
GRI geologic-GIS data is also available online at the NPS Data Store Search Application: http://irma.nps.gov/App/Reference/Search. To find GRI data for a specific park or parks select the appropriate park(s), enter “GRI” as a Search Text term, and then select the Search Button.

For more information about the Geologic Resources Inventory Program visit the GRI webpage: http://www.nature.nps.gov/geology/inventory, or contact:

Bruce Heise
Inventory Coordinator
National Park Service Geologic Resources Division
P.O. Box 25287
Denver, CO 80225-0287
phone: (303) 969-2017
fax: (303) 987-6792
email: Bruce_Heise@nps.gov

The Geologic Resources Inventory (GRI) program is funded by the National Park Service (NPS) Inventory and Monitoring (I&M) Division.
GRI Digital Maps and Source Map Citations

The GRI digital geologic-GIS map for Bering Land Bridge National Preserve, Alaska (BELA):

Digital Geologic Map for Bering Land Bridge National Preserve (BELA)

 Note: This map was used to proof digital GIS data converted from the source below (OF-2009-1254).

 Note: The digital GIS data from this source was converted into the NPS GRI data model and proofed using a more current paper version of the same map area (SIM-3131).

Additional information pertaining to each source map is also presented in the GRI Source Map Information (BELAMAP) table included with the GRI geology-GIS data.
Map Unit List

The bedrock geologic units present in the digital geologic-GIS data produced for Bering Land Bridge National Preserve, Alaska (BELA) are listed below. Units are listed with their assigned unit symbol and unit name (e.g., Qlj - Lost Jim Basalt). Units are listed from youngest to oldest. No description for water is provided. Information about each geologic unit is also presented in the GRI Geologic Unit Information (BELAUNIT) table included with the GRI geology-GIS data.

Geologic Map Units

Quaternary
- Qlj - Lost Jim Basalt
- Qs - Surficial deposits, undivided

Quaternary and Tertiary
- QTv - Weathered volcanic rocks, undivided

Tertiary and Cretaceous
- TKs - Carbonate-rich conglomerate and sandstone; mudstone, siltstone and coal
- TKv - Felsic volcanic rocks

Cretaceous
- Ktg - Tin-bearing granitic stocks
- Kgu - Granitic rocks, undifferentiated
- Kds - Dikes and stocks
- KP - Pargon pluton
- KG - Kigluaik granite
- KS - Stocks, undifferentiated
- Kku - Kugruk pluton
- Kwc - Windy Creek pluton
- Kd - Darby pluton
- KbK - Bendeleben and Kuzitrin plutons

Mesozoic and Paleozoic
- MZPZm - Metamorphosed mafic rocks and serpentinite

Jurassic
- JT - Spruce Creek tonalite

Paleozoic
- PZ - Limestone
- Pzp - Phyllite and argillite
- PZnp - Metagabbro and metasediments
- PZm - Marble, undivided
- PZd - Dolostone, undivided
- PZgb - Metagabbro
Paleozoic and Proterozoic

PZPRI - Metalimestone
PZPRt - Metasiltstone and phyllite
PZPRh - High-grade metasedimentary and metaigneous rocks
PZPRm - Marble
PZPRg - Gneiss and orthogneiss

Mississippian

Mi - Limestone, dolomitic limestone, and marble

Devonian

Ds - Pelitic schist
Dcs - Pelitic, calcareous, and graphitic schist
Ddm - Dolostone, metalimestone, and marble
Dq - Granitic orthogneiss
Df - Felsic schist

Devonian and Silurian

DSI - Limestone

Devonian to Ordovician

DOx - Mixed marble, graphitic metasiliceous rock, and schist
DObm - Black metalimestone and marble

Devonian to Cambrian

DCks - Calcareous schist of Kwiniuk Mountain

Silurian

Sd - Dolostone

Silurian and Ordovician

SOdl - Dark limestone
SOul - Limestone and dolostone, undifferentiated

Ordovician

Ocs - Casadepaga Schist
Oim - Impure chlorite marble
Ois - Limestone and shale
Od - Dolostone
O1 - Limestone
Oal - Argillaceous limestone and limestone

Ordovician to Proterozoic

OPRI - Limestone and dolomitic limestone
OPRt - Sandstone, siltstone, and limestone
OPRp - Phyllite

Proterozoic

PRn - Metagranitic rocks
Pro - Orthogneiss
PRv - Metavolcanic rocks
Map Unit Descriptions

Descriptions of all geologic map units, generally listed from youngest to oldest, are presented below.

Qlj - Lost Jim Basalt (Holocene)

A single basaltic lava flow and associated vent deposits, undisrupted by frost brecciation, located in central Bendeleben quadrangle. The dark gray-black vesicular olivine basalt in eastern part of the unit exhibits pahoehoe flow features and lava tubes. Maximum age is constrained to be less than 0.8 Ma based on stratigraphic position above unit QTv (Turner and Swanson, 1981). GRI Source Map ID 75659 (SIM-3131).

Qs - Surficial deposits, undivided (Quaternary)

Frost-rived rubble on slopes and broad low ridges; glacial moraine; glacially deposited sand, gravel, and boulders; fluvial gravel and sand; marine and fluvial terrace deposits; wetlands. GRI Source Map ID 75659 (SIM-3131).

QTv - Weathered volcanic rocks, undivided (Quaternary and Tertiary)

Basalt lava flows, vent deposits, maar volcanoes and associated pyroclastic rocks exposed in northern, central, eastern, and to a minor extent, southern Seward Peninsula.

Less weathered rocks are slightly to strongly fragmented by frost riving and locally overlain by windblown silt. These rocks include alkali olivine basalt and olivine tholeiite. Alkaline rocks contain phenocrysts of olivine with plagioclase, augite, and spinel in the groundmass. Tholeiitic rocks contain plagioclase, phenocrysts with augite, hypersthene, and olivine, and spinel in the groundmass (Swanson and others, 1981). These less weathered volcanic rocks underlie portions of the Lost Jim Basalt in central Bendeleben quadrangle, and include the Camille Basalt and Gosling Volcanics of Hopkins (1963), as well as small flows in valley centers on the south flank and south of the Bendeleben Mountains. Potassium-argon (K-Ar) determinations on basalt from Kugruk River canyon (Turner and Swanson, 1981) and from the northwest flank of the Bendeleben Mountains (Kaufman and Hopkins, 1985) indicate that the Gosling Volcanics were in part extruded between 0.9 and 0.8 Ma. The Camille Basalt is younger by an unknown amount of time. Equivalent to unit “Qv” of Till and others (1986). In southern Seward Peninsula, a small basaltic vent and associated flows yielded a 40Ar/39Ar whole rock age of approximately 0.8 Ma (Werdon and others, 2006).

Other volcanic rocks are thoroughly fragmented by frost action. These are the most widely distributed and voluminous volcanic rocks on the peninsula; they underly most of the Imuruk Lake lava plateau but are mapped only where exposed through an otherwise 1- to 6-m thick mantle of windblown silt. The rocks are mostly alkali olivine basalt with phenocrysts of olivine with plagioclase, augite, and spinel in the groundmass. Lesser olivine tholeiite contains plagioclase phenocrysts with augite, hypersthene, olivine, and spinel in the groundmass (Swanson and others, 1981). This part of the unit includes the Imuruk Volcanics of Hopkins (1963), which are between 2 and 5 Ma (Hopkins and others, 1971; Turner and Swanson, 1981). Flows of the Imuruk Volcanics were confined by modern valley systems that drained north from Imuruk Lake area and, as a result of subsequent stream incision, are exposed as bench remnants high on valley walls. South and east of Imuruk Lake, older volcanic rocks cap ridge tops. These older flows are between 26 and 29 Ma (Turner and Swanson, 1981). In southeastern
Bendeleben quadrangle, basalt flows are interlayered with sedimentary rocks that have yielded early Eocene pollen (Dickinson and others, 1987). Equivalent to unit “QTv” of Till and others (1986).

The older volcanic units contain xenoliths of dunite, harzburgite, chromite, granite, and schist (Hopkins, 1963). Dunite xenoliths are most common, and reached 7–8 cm across. Granite and schist xenoliths are smaller (less than 2 cm across) and occur only where the volcanics erupted through granitic or metamorphic bedrock. Similar xenoliths in correlative volcanic rocks in western Alaska and on Saint Lawrence Island have had more detailed study (for example, Wirth and others, 2002).

The Late Quaternary Espenberg Maars, 30–50 km southwest of Cape Espenberg on northern Seward Peninsula, consist of four large craters ranging from 4 to 8 km in diameter surrounded by coeval tephra layers. These craters, known as Devil Mountain, Whitefish, North Killeak, and South Killeak Maars, are each separate eruption craters excavating 100 to 300 m into Pleistocene sediments and lavas (Hopkins, 1988). The maars are surrounded by a thick blanket of pyroclastic surge and airfall tephra deposits. Cliffs around Devil Mountain Maar expose sequences of_bedded surge deposits, airfall lapilli beds, scoria, massive pyroclastic flows and explosion breccia (Begét and others, 1996). This volcaniclastic sediment is evidence that the Espenberg Maars were formed by highly explosive hydromagmatic eruptions through permafrost, which ultimately created the unusually large maar craters. Devil Mountain Maar is 8 km long by 6 km wide, as much as 200 m deep, and covers over 30 km2. It is the largest known maar on earth; the three other maars on Seward Peninsula are also larger than any previously described maar.

Mafic volcanic rocks of this unit are one of several Cenozoic volcanic fields in western Alaska that extend from northern Seward Peninsula to Saint Lawrence Island and the Pribilof Islands on the Bering Sea shelf (Moll-Stalcup, 1994); the Pribilof Islands are about 840 km south-southwest of Nome. GRI Source Map ID 75659 (SIM 3131).

TKs - Carbonate-rich conglomerate and sandstone; mudstone, siltstone and coal (Tertiary and Cretaceous)

Two separate sedimentary sequences, of broadly different age: tan to light-gray siltstone, sandstone, and pebbly sandstone, and light-gray-weathering conglomerate composed mostly of marble, metatuff, and dolostone clasts, probably of mid-Cretaceous age; and a separate sequence of gray and brown siltstone, mudstone, sandstone, coal, and minor conglomerate of Late Cretaceous and Tertiary age. Both sequences are exposed in narrow slices along the Kugruk Fault Zone. Mid-Cretaceous carbonate-rich sandstone and siltstone are found in southeastern and east-central parts of the Bendeleben quadrangle; conglomerate is found in these areas as well but also forms scattered outcrops in southeastern Solomon and southwestern Norton Bay quadrangles, where it is the dominant lithology. The younger sequence is poorly exposed in northeastern and southeastern Bendeleben quadrangle; it has been explored for coal and uranium (Retherford and others, 1986; Dickinson and others, 1987).

The older sequence, carbonate-rich sedimentary rocks, is better exposed. Carbonate-rich sandstone and siltstone typically occur as rubble-covered hills but are best exposed in river-cliff outcrops in Bendeleben C–2 quadrangle. Rocks are friable to well indurated, calcite cemented, and form beds 5 to 60 cm thick; sedimentary structures include graded bedding, channels, small scale ripples, and crossbeds. Some fine-grained layers are rich in carbonaceous plant debris and coal seams are locally well developed. Most samples consist of poorly to moderately well sorted, angular to rounded grains. Clasts appear to have been derived primarily from adjacent metamorphic rocks; clast lithologies include marble, dolostone, plagioclase, monocrystalline and polycrystalline quartz, volcanic rocks (with felsitic and lathwork textures), blueschist-facies metabasite, radiolarian chert, phyllite, quartz-mica schist, and amphibolite. Carbonate clasts predominate at most localities.
Conglomerate, associated with minor sandstone and pebbly sandstone, forms rounded knobs up to 25 m high and more extensive areas of rubble crop. Bedding is rarely evident, but sandy interbeds and crude grading are locally present. Rocks are very poorly sorted and have a matrix of calcite cement and carbonate sand. Cobbles are sub-rounded to rounded; maximum clast diameter at outcrops studied ranges from 52 to 72 cm. Pebble counts indicate that carbonate clast content varies from a low of 81 percent in Bendeleben C–2 quadrangle to a high of 98 percent in Bendeleben A–1 quadrangle. Marble and metallimestone versus dolostone ratios range from 1:2 in Bendeleben A–1 quadrangle to 3:1 in Bendeleben C–2 quadrangle. Non-carbonate clasts include chert, monocrystalline and polycrystalline quartz, quartz-mica schist, chlorite schist, and various greenstone lithologies that were likely derived from the adjacent unit MZPZm.

Two small outcrops of mafic clast conglomerate underlie carbonate conglomerate in Bendeleben C–2 quadrangle. Sorting in these rocks is poor; clasts are rounded to angular and as much as 30 cm in diameter. Clasts are mainly metavolcanic rocks, some of which contain blue amphibole; subordinate clast lithologies include radiolarian chert, marble, quartz, and quartz-mica schist.

The calcareous sediments are locally intruded by sills (too small to show on this map) of probable Tertiary or Cretaceous age; the sediments are unmetamorphosed but deformed and vertical beds occur locally. No fossils constrain the depositional age of the conglomerates, but ages of some clasts have been determined. Carbonate clasts from six localities yielded 21 conodont collections, 19 of which have CAI values of 5–6 (table A–1). Relatively well-constrained clast ages are mainly Silurian and Devonian; the tightest ages are Middle to Late Ordovician, early to middle Silurian, middle to late Silurian (Wenlock-Ludlow), late Early Devonian (late Emsian), and Middle Devonian. Conodont biofacies of several of the Silurian clasts indicate a high-energy, shallow-water depositional setting (Till and others, 1986). The lithofacies, thermal level, age, and biofacies of the carbonate clasts correlate well with those of units Od, Sd, and Ddm; thus, carbonate cobbles in TKS most likely were derived largely from these units. Carbonate clasts of Silurian age and shallow-water biofacies appear to be volumetrically over-represented relative to the present areal distribution of such rocks. The carbonate-rich clastic rocks of TKS may have been deposited in a series of small alluvial fans.

The mid-Cretaceous carbonate-rich sedimentary sequences exposed east of Seward Peninsula in the Yukon-Koyukuk basin (Nilsen, 1989; Patton and others, 2005) are thought to be correlative with the carbonate-rich sedimentary rocks of unit TKS.

The younger sequence in TKS is exposed in creek bottoms in Bendeleben D–1 quadrangle and in a small area south of Death Valley, in Bendeleben A–1 quadrangle. In the northern locality, lignite, up to 30 m thick, is interbedded with siltstone, mudstone, and sandstone along a strike length of almost three-quarters of a mile, based on drilling results; bedding is steeply dipping (Retherford and others, 1986). Pollen assemblies of Late Cretaceous and Tertiary (Eocene to early Miocene?) ages have been found in finer grained parts of the sequence (Till and others, 1986; Haga, in Retherford and others, 1986). Drilling results show that schists of the Nome Complex sit structurally above parts of the sequence (Retherford and others, 1986).

In southeastern Bendeleben quadrangle, the younger sequence is also exposed in a small area south of Death Valley. Early Eocene and younger sedimentary and basaltic rocks accumulated in a small graben and are interleaved with basaltic rocks (Dickinson and others, 1987). Sandstone, mudstone, conglomerate and coal beds up to 55 m thick were documented in drill core. Sandstones in the core host an epigenetic and supergene uranium deposit (Dickinson and others, 1987). A similar sequence of sedimentary and volcanic rocks probably underlies Death Valley.

Unit is equivalent to units “Kc” of Miller and others (1972), “KcC” of Sainsbury (1974), “TKs” and “TKc” of Till and others (1986), and “Kcc” of Patton and others (2005); also partly equivalent to units “Kss”, “Kls”, and “TKs” of Sainsbury (1974). GRI Source Map ID 75659 (SIM-3131).
TKv - Felsic volcanic rocks (Tertiary and Cretaceous)

Rubble crop of volcanic rocks in northeastern part of the map area, in Bendeleben D–1 quadrangle. Unit consists of two varieties of volcanic rock, both moderately to strongly limonite stained. One is a volcanic flow or tuff that contains up to 4% phenocrysts in an aphanitic, devitrified groundmass. Phenocrysts are predominately sanidine with rare quartz and plagioclase. No mafic minerals are present, but morphology of rare aggregates of sericite, opaques and limonite suggest the former presence of biotite. The second type of volcanic rock is fragmental and contains schist, devitrified volcanics, and angular quartz fragments in a felsic(?), sericite-bearing matrix. It may be a volcanic flow breccia or vent breccia rock. Age of unit is unknown. Felsic tuffs on Saint Lawrence Island have yielded a K-Ar age of 39.3 Ma (Patton and Csejtey, 1980). GRI Source Map ID 75659 (SIM-3131).

Ktg - Tin-bearing granitic stocks (Late Cretaceous)

Stocks of biotite granite exposed in outcrop, rubble, and float in northwestern Seward Peninsula. Includes stocks at Cape Mountain, Brooks Mountain, Black Mountain, Ear Mountain, and the Oonatut Granite Complex. The belt also includes bodies not exposed at the surface at Lost River Mines and Kougarok Mountain. Stocks are dominantly biotite granite with lesser aplitic and pegmatitic phases (Hudson and Arth, 1983). Larger stocks, such as the Oonatut, are texturally zoned. Contacts with country rocks are sharply crosscutting, and contact aureoles are narrow. Epizonal stocks have high 87Sr/86Sr initial ratios and elevated Th, U, Hf, and Ta (Hudson and Arth, 1983). Potassium-argon (K-Ar) biotite ages range from 69.2±2 to 80.2±3 Ma (Hudson and Arth, 1983). Tin lodes and placers are associated with the stocks (Reed and others, 1989). Tin and tungsten were commercially mined in Lost River area, western Teller quadrangle (Sainsbury, 1969b). GRI Source Map ID 75659 (SIM-3131).

Kgu - Granitic rocks, undifferentiated (Cretaceous)

Granitic dikes, sills and small plugs at widely scattered localities. Most commonly these bodies occur within exposures of high-grade metamorphic rocks (unit PZPRh), but unit is also present in the Nome Complex and on islands off the south and west coasts of the peninsula. Unit includes small bodies of anatectic biotite granite in southern Darby Mountains at Mount Arathlatuluk (107.8±0.2 U-Pb zircon age), thought to be melts of the surrounding high-grade metamorphic rocks. Several bodies in western and easternmost Bendeleben Mountains intruded high-grade metamorphic rocks; small granitic bodies intruded the Nome Complex north of Death Valley, just south of the east end of the Bendeleben Mountains, and in the northeast Bendeleben quadrangle, near the boundary between the Bendeleben and Candle quadrangles. Fairway Rock, a small island directly west of the peninsula near Little Diomede Island, is a porphyritic hypersthene-bearing granite, with orthoclase crystals up to 10 cm long that are locally aligned in a fabric (Shumway and Moore, 1964). Biotite from Fairway Rock yielded a K-Ar biotite age of 110.7±3 Ma, similar to ages to alkalic intrusives on Seward Peninsula. Little Diomede Island, King Island, and Sledge Island are biotite-hornblende quartz monzonites or granites of unknown age (Sainsbury, 1972; Sainsbury and others, 1972). Extremely variable accessory mineralogy. Undated bodies are assumed also to be Cretaceous in age. GRI Source Map ID 75659 (SIM-3131).

Kds - Dikes and stocks (Cretaceous)

Dikes and rare stocks of a variety of compositions and ages mapped extensively in the York, Kigluaik, and Bendeleben Mountains, and near the Darby Mountains, but also present in the Nome Complex. Some, but not all, are shown on the map as small pink lines.
The oldest dike known is an analcime-biotite-nepheline syenite that intruded the Nome Complex in central Solomon quadrangle and yielded a biotite 40Ar/39Ar age of 107 Ma (Werdon and others, 2005a). A group of alkalic dikes, nepheline syenite and pseudeulecule porphyries, are exposed as frost-riven rubble in Solomon C–2, C–3 and D–3 quadrangles and intruded portions of the Kachauik pluton and adjacent marble. The dikes are up to 10 m wide and have strike lengths up to 900 m. They strike mostly to the northeast and are vertical. Syenite of the Kachauik pluton is highly radioactive adjacent to the dikes, containing up to 0.15% U3O8, 1.05% ThO2 and 2% rare earth elements (Miller and Bunker, 1976). Dikes yielded a K-Ar biotite age of 96.3±3 Ma (Berry and others, 1976).

Alkali feldspar granite to quartz monzodiorite pegmatite dikes and sills are common at the core of the Kigluaik Mountains, in the western Bendeleben Mountains, and in the Darby Mountains, but are not found in rocks of lower metamorphic grade. A foliated pegmatite dike that cut high-grade metamorphic rocks in the Bendeleben Mountains yielded a U-Pb zircon age of 99±2 Ma (Gottlieb and Amato, 2008).

Dark-brown- to orange-weathering alkalic diabase dikes are widespread on Seward Peninsula, but best documented in high-grade metamorphic rocks that underlie mountain ranges. Alkalic diabase dikes cut high-grade rocks and Cretaceous plutons in the Kigluaik and Bendeleben Mountains; dikes are up to 5 m across and yield 40Ar/39Ar ages of approximately 83 Ma (Calvert and others, 1999; Amato and others, 2003c). Similar brown- to orange-weathering alkalic mafic dikes in the Nome Complex are exposed in scattered locations on southern Seward Peninsula; in Solomon quadrangle, mafic dikes yielded 40Ar/39Ar ages of 80 to 84 Ma (Werdon and others, 2005a; Newberry and others, 2005; Werdon and others, 2006).

In the Bendeleben Mountains, light-tan- to orange-weathering, altered, porphyritic dikes, sills and small plugs of quartz latite are about the same age as the regionally widespread diabase dikes. In Bendeleben A–4 quadrangle, dikes are up to 12 m across and have aphanitic groundmass, feldspar and quartz phenocrysts, and altered mafic phenocrysts. Textures in dikes, sills and plugs indicate crystallization at shallower levels than the nearby granite bodies and pegmatite dikes. Gottlieb and Amato (2008) reported a U-Pb zircon age of 82±1 Ma for a hypabyssal porphyritic dike, likely from this group of dikes. Dikes may be, in part, equivalent to unit “Kql” (quartz latite porphyry) and unit “Khi” (hypabyssal intrusive rocks) mapped by Miller and others (1972), and the “rhyolites of the western Bendeleben Mountains” of Turner and Swanson (1981). Similar intermediate to felsic dikes are exposed in the southern Darby Mountains, but their age is unknown.

In western Nome quadrangle, biotite- and hornblende-bearing granitic dikes and lesser tourmaline-bearing pegmatite dikes cut folded and coarsely recrystallized marble (unit PZmm). K-Ar ages of 80.5±0.8 Ma (biotite) and 84.2±0.9 Ma (hornblende) from the dikes are cooling ages (N. Shew, written communication, 1993); the hornblende age more closely approximates the intrusive age. GRI Source Map ID 75659 (SIM-3131).

Kp - Pargon pluton (Cretaceous)

Fine-grained equigranular, fine- to medium-grained seriate granodiorite, monzodiorite, and locally monzogranite exposed in the western Bendeleben Mountains along the upper reaches of the Pargon River. Granodiorite and quartz monzonite are the dominant lithologies. Upper contact of the pluton is preserved locally. Pargon pluton yielded a U-Pb zircon age of 86±1 Ma (Gottlieb and Amato, 2008). GRI Source Map ID 75659 (SIM-3131).
Kg - Kigluaik granite (Cretaceous)

Fine- to medium-grained felsic rocks of the upper part of the Kigluaik pluton, including leucocratic biotite granite and granodiorite (Amato and Miller, 2004). Unit is more extensively exposed than the mafic root, the Kigluaik diorite (unit Kdi), and contains minor amounts of alkali feldspar granite and quartz syenite (Amato and others, 1994; Amato and Wright, 1997). Contact with the underlying mafic root (Kdi) is a 10- to 20-m-thick “mixing/mingling” zone characterized by mafic enclaves in a granitic matrix; textures suggest that unit is the same age as unit Kdi (Amato and Wright, 1997). The upper contact of unit with the overlying metamorphic rocks is locally exposed (Amato and Wright, 1997). Geochemical characteristics of units Kg and Kdi indicate formation in a subduction zone setting (Amato and Wright, 1997). GRI Source Map ID 75659 (SIM-3131).

Ks - Stocks, undifferentiated (Cretaceous)

Frost-riven outcrops, rubble fields, and float of felsic intrusive rocks at four localities align along a roughly north-south trend in Bendeleben C–3 and D–3 quadrangles. The northernmost, Crossfox Butte stock, is monzogranite to quartz monzonite with rare leucocratic syenite that contains several percent purple fluorite, muscovite, and minor scheelite. Country rock rubble around the stock consists of hornfelsed marble and calc-silicate rocks. A biotite K-Ar date of 91.5±2.8 Ma is considered suspect due to chloritization of the biotite (Till and others, 1986). The Asses Ears stock is monzogranite to syenogranite and strikingly porphyritic, with alkali feldspar phenocrysts 2 to 4 cm long. The Virginia Butte stock is quartz monzonite to syenite that yielded a biotite K-Ar date of 94.8±1.9 Ma (Till and others, 1986). The southernmost, Nimrod Hill stock, is monzonite but contains rare biotite-rich diorite. Hornblende from Nimrod Hill yielded a K-Ar age of 96.3±2 Ma (N. Shew, written communication, 1990). Aeromagnetic data suggest the stock extends west under Imuruk Lake and also suggest a possible connection with the Virginia Butte and Asses Ears stocks to the north (J. Cady, written communication, 1986). GRI Source Map ID 75659 (SIM-3131).

Kku - Kugruk pluton (Cretaceous)

Frost-riven rubble in northeast corner of Bendeleben C–2 quadrangle. Quartz monzonite to quartz monzodiorite. Green porphyritic rocks of approximately dioritic composition at the eastern margin of the pluton may be a border phase. Aeromagnetic data suggest that the pluton is larger than mapped (J. Cady, written communication, 1986). Biotite produced a K-Ar date of 94.8±2.8 Ma (Till and others, 1986). GRI Source Map ID 75659 (SIM-3131).

Kwc - Windy Creek pluton (Cretaceous)

Talus and frost-riven rubble at north end of the Darby Mountains in Bendeleben A–1 and A–2 quadrangles. Rock type is quartz monzonite that is locally cut by biotite granodiorite dikes. Blocks or roof pendants of metamorphic rocks are locally common, especially in western portion of the pluton. A large block of marble, schist and calc-silicate hornfels is contained within eastern portion of the pluton. Miller and others (1972) found boulders of nepheline syenite in streams that drain east side of the pluton. Portions of pluton are altered and veined. Alteration consists of limonite staining, weak to strong sericitization of plagioclase, and variable chloritization and sericitization of hornblende. Two types of veins are present: (1) rare pieces of quartz vein material up to 15 cm across containing several percent fluorite, 1 to 2 percent molybdenite, and galena and sphalerite; and (2) thin, mostly <3 mm but up to 1 cm, veinlets containing quartz and pyrite fluorite, molybdenite, scheelite and minor galena and sphalerite. Although these veinlets crosscut each other, they do not constitute a stockwork system.
Yielded a hornblende K-Ar age of 93.8±2.1 Ma (N. Shew, written communication, 1987), and a U-Pb zircon age of 96.5±0.2 (R. Friedman, written communication, 2009). *GRI Source Map ID 75659 (SIM-3131)*.

Kd - Darby pluton (Cretaceous)

Elongate monzogranite, locally granodiorite pluton 80 km long and 3 to 8 km wide that extends along crest of the Darby Mountains in southeast part of the peninsula. Outcrops are common in northern part of the pluton; frost-riven rubble predominates elsewhere. Pluton is characterized by phenocrysts of alkali feldspar up to 5 cm long. Some gradual zonation of mineralogy: hornblende content decreases slightly to north; plagioclase content decreases slightly to north with a corresponding increase in alkali feldspar and quartz contents. Rounded or ellipsoidal inclusions of a mafic igneous rock are common. K-Ar ages range from 96.4±3 Ma to 90.5±1.5 (Miller and Bunker, 1976). Yielded a U-Pb zircon age of 100.1±0.1 (R. Friedman, written communication, 2009). *GRI Source Map ID 75659 (SIM-3131)*.

Kbk - Bendeleben and Kuzitrin plutons (Cretaceous)

Monzogranite and granodiorite; outcrop, talus, rubble, and some cirque headwall exposures in eastern Bendeleben Mountains in Bendeleben A–2, A–3, B–2 and B–3 quadrangles, and small rubble fields north of the range in Bendeleben C–3 quadrangle. Known as two separate plutons, aeromagnetic data show that they are connected at depth, and they have similar chemistry, mineralogy, and cooling histories; they are lobes of the same large body. Contacts of both Bendeleben and Kuzitrin lobes with surrounding metamorphic rocks are not sharp, but rather are broad, several-kilometer-thick zones of mixed metamorphic and granitic rocks. Percentage of granitic rocks in contact zone decreases with distance from the two lobes. The Bendeleben lobe is monzogranite to quartz monzodiorite; contacts between these two phases do not appear to be gradational. Inclusions of plagioclase-biotite-pyroxene-quartz schist are locally common, and spectacular exposures of large inclusions or blocks of schist are present on northeast side of ridge in sec. 7, T. 3 S., R. 19 W. (Bendeleben A–2 quadrangle). Varying degrees of assimilation of this schist may account for the mineralogical and lithological variations. The Kuzitrin lobe is predominantly monzogranite and less well exposed. A U-Pb zircon crystallization age of 104±1 Ma was obtained from a foliated part of western Bendeleben pluton (Gottlieb and Amato, 2008). Biotite from Bendeleben lobe yielded a K-Ar age of 81.1±2 (Miller and Bunker, 1976; location 61 on sh. 2); a biotite sample from Kuzitrin lobe (location 62 on sh. 2) yielded a K-Ar age of 83.0±1.4 Ma. The biotite ages record pluton cooling. *GRI Source Map ID 75659 (SIM-3131)*.

MZPZm - Metamorphosed mafic rocks and serpentinite (Mesozoic and Paleozoic?)

Tectonic assemblage of metagabbro, metabasalt, amphibolite, serpentinite, and minor chert, exposed in rubble fields and poor outcrops along the trend of the Kugruk Fault Zone. Mafic rocks include minor unmetamorphosed (but altered) rocks, rocks with relict igneous textures and a single metamorphic overprint, and rocks that have experienced more than one metamorphic event. Pumpellyite- and prehnite-bearing veins that cross foliation are common in many lithologies.

In outcrop, singly metamorphosed mafic rocks are light to medium green, medium and grayish green, massive to finely color laminated. The degree of deformation varies within the unit. In thin section, metamorphic minerals statically overprint igneous textures, are weakly to well-aligned in a foliation, or the rock texture is mylonitic, with undulose extinction, grain size reduction, and microboudinage.
Metagabbros and metabasalts typically retain porphyroclasts of igneous clinopyroxene that have rims of actinolite or blue amphibole. Mineral assemblages reflect a variety of metamorphic facies: actinolite-epidote-chlorite-plagioclase, blue amphibole-lawsonite(?)-chlorite, blue amphibole-epidote-chlorite, and blue amphibole-pumpellyite-chlorite. These greenschist-, lawsonite-blueschist-, epidote blueschist-, and transitional blueschist-pumpellyite-actinolite-facies rocks occur over the length of the fault zone and are intermixed. The presence of multiple facies may reflect compositional variation in the mafic rocks rather than significant differences in metamorphic history. The boundaries among these facies come close to intersecting at temperatures of about 275–350 °C and pressures of 6–8 kb and variations in bulk rock composition shift the boundaries in pressure-temperature space (Evans, 1990). These rocks may have formed at generally similar conditions.

There are two groups of multiply metamorphosed rocks. Amphibolites composed of coarse actinolite overprinted by finer grained greenschist-facies assemblages are minor but widespread. In the northern part of the fault zone (Bendeleben D–1 and Kotzebue A–1 quadrangles) mafic rocks display evidence of an albite-epidote amphibolite facies event overprinted by a lower grade event. Blue-green amphibole, epidote, and albite, with and without garnet, occur in equilibrium metamorphic textures. These albite-epidote-amphibolite-facies assemblages are slightly to significantly overprinted by epidote-blueschist or greenschist assemblages, largely on mineral rims or cracks. The later metamorphic event is likely the same event that affected mafic rocks in the unit farther south.

Rubble crop of light-green-weathering, dark-greenish-black serpentinite is found in two large lenses in eastern Solomon quadrangle and in smaller bodies, up to 30 m across, in beach cliffs on Kotzebue Sound. The southern lens is the largest and is closely associated with outcrops of mylonitic metabasite.

Rare subcrop of dark rusty-brown-weathering volcanioclastic rocks occurs in Bendeleben B–2 quadrangle; rocks are fine- to medium-grained and composed of unsorted sub-rounded to angular clasts of aphanitic to porphyritic basalt. Basalt textures are variable; grain size, mineralogy, and vesicularity vary from clast to clast. Associated with these rocks are lesser light-gray- to orange-weathering, very fine grained porphyritic felsic rocks. Quartz and plagioclase phenocrysts sit in a slightly recrystallized, fine-grained matrix; disseminated iron oxides impart the orange color.

Unit MZPZm is equivalent of unit “Pmv” of Miller and others (1972), unit “Jv” of Sainsbury (1974), and combined units “MZPZm”, “MZPZb”, and “MZPZs” of Till and others (1986).

Jt - Spruce Creek tonalite (Jurassic)

Tan-weathering, recessive, quartz-poor, plagioclase-rich intrusive rock. Rubble along middle to upper portions of Spruce Creek, in the headwaters of the Kugruk River in Bendeleben B–2 and B–3 quadrangles, is 50 to 70 percent plagioclase, 5 percent hornblende, and 25 to 45 percent quartz. Alkali feldspar is absent. A more hornblende-rich (30 percent), quartz-free dioritic variety is locally present. Hornblende is preserved in northernmost exposures of the stock, along west banks of the creek. Elsewhere, no primary mafic minerals are present; hornblende is altered to mixtures of chlorite, opaque minerals, and epidote. An odd textural variety of the stock was found in one locality. Approximately 70 percent of this rock consists of concentrically radiating, spherulite-like intergrowths of plagioclase and quartz, often surrounding cores or nucleus grains of quartz or plagioclase, 0.7 to 1.7 mm in diameter. Several small exposures of an intrusive similar to the tonalite, thought to be fault slivers, are found along an unnamed stream that flows into the Kugruk River in the northwest corner of Bendeleben C–1 quadrangle. Tonalite yielded a U-Pb zircon age of 163±3 Ma (J. Aleinikoff, written communication, 1987; Till and Dumoulin, 1994). Equivalent to unit “MZPZt” of Till and others (1986).
PZl - Limestone (Paleozoic)

Intensely deformed limestone that has yielded no fossils but is presumed to be of Paleozoic age (Sainsbury, 1972), exposed in several small outcrops in central Teller quadrangle, northeast of the York Mountains. Equivalent to western part of unit "PZl" of Sainsbury (1972). GRI Source Map ID 75659 (SIM-3131).

PZp - Phyllite and argillite (Paleozoic)

Phyllite, argillite, and lesser metasiltstone and fine-grained metacarbonate rocks exposed south and north of Grantley Harbor in central Teller quadrangle. Outcrops consist of brownish-orange- to black-weathering, silvery-gray to black, locally carbonaceous phyllite to argillite, with interlayers and lenses of tan to green metasiltstone to semischist and dark gray to black, locally tannish-orange metacarbonate. Lithologies are interlayered on a scale of centimeters, with metacarbonate layers as thick as 1.5 m. These rocks have yielded sparse conodont fragments of indeterminate Ordovician-Triassic age (table A–1; T. Carr and T. Hudson, written communication, 1982, 1984) and contain rare relict bioclasts, including probable recrystallized radiolarians and siliceous sponge spicules, observed in thin section. Unit PZp in part resembles carbonaceous radiolarian-bearing rocks found in eastern exposures of unit DOx. Equivalent to part of unit "PZb" of Hannula and others (1995) and parts of unit "PCs" and "PCnc" of Sainsbury (1972). GRI Source Map ID 75659 (SIM-3131).

PZnp - Metagabbro and metasediments (Paleozoic?)

Massive hills, tors and rubble piles of metagabbro and poorly exposed metasedimentary rocks on west side of the Kigluaik Mountains. Metagabbro bodies form flat-topped hills generally less than a kilometer across; one body exposed along sea cliffs is 9 km long. Metasedimentary rocks are poorly exposed and include metagraywacke and tuffaceous metasediments. Original igneous and sedimentary features are preserved. In thin section, metagabbro is coarse grained and partially to completely recrystallized to actinolite, epidote, chlorite, titanite, albite and quartz (Hannula and others, 1995; Till, unpublished data). The metagabbros are geochemically similar to metasites from units Ocs and DOx (Ayuso and Till, 2007). The geometries of outcrop-scale structures are similar to those in the more completely recrystallized and deformed part of the Nome Complex. Hannula reported three pumpellyite and actinolite bearing samples from northern parts of the unit and one crossite-bearing sample from the central part, which indicates that metamorphic grade increases from northwest to southeast within the unit. The contact between units PZnp and Ocs to the southwest corresponds to the garnet isograd of Hannula and others (1995). Unit PZnp may be equivalent to unit Ocs. Equivalent to unit “PZmw” of Hannula and others (1995). GRI Source Map ID 75659 (SIM-3131).

PZm - Marble, undivided (Paleozoic)

Generally light-gray-weathering, white to medium-gray, medium to coarsely crystalline marble that forms rubble-covered hills and small outcrops that are widely but sparsely distributed through the map area. Marble is dominantly pure, but locally contains as much as 10 percent quartz, white mica, and (or) albite. At several localities in the western Bendeleben and Solomon quadrangles, PZm contains conodonts, stromatoporoids and (or) colonial and rugose corals of Ordovician through Devonian or Silurian to Devonian age; combined age constraints from megafossils and microfossils at one locality suggest an age of Middle Devonian (table A–1; Till and others, 1986). Unit PZm likely includes rocks of several different ages. It correlates at least in part with Ddm but lacks the lithologic features diagnostic of that unit; some parts of PZm may be as old as Ordovician (table A–1). Occurrences that have yielded no
fossils are assumed to be Paleozoic based on physical proximity to strata of known Paleozoic age. The relation of PZm to rocks of the Nome Complex is uncertain; it is most commonly spatially associated with unit Ds. Equivalent to unit “PZm” of Till and others (1986). \textit{GRI Source Map ID 75659 (SIM-3131).}

PZd - Dolostone, undivided (Paleozoic)

Generally light-colored, fine-grained, featureless dolostone that forms rubble-covered hills sparsely distributed through the map area. This unit likely includes rocks of several ages. Conodont faunas, obtained at seven localities, are mostly long ranging but one collection, in eastern Bendleben quadrangle, may be Early Mississippian; another, in northwestern Solomon quadrangle, is middle Silurian-Early Devonian; and a third, in western Candle quadrangle, could be Ordovician (table A–1; Till and others, 1986). Occurrences that lack fossils are assumed to be Paleozoic based on physical proximity to strata of known Paleozoic age. Some rocks mapped as PZd at Cape Deceit in the Kotzebue quadrangle may be part of unit DObm (T. Ryherd, written communication, 1985; Ryherd and Paris, 1985). Unit PZd may also include strata correlative with units Cd, Od, Sd, and (or) Ddm that lack lithologic or faunal features diagnostic of these units. The relation of PZd to rocks of the Nome Complex is uncertain. Equivalent to unit “PZd” of Till and others (1986), and, in Candle and Norton Bay quadrangles, to part of “PZcs” of Patton and others (2005). \textit{GRI Source Map ID 75659 (SIM-3131).}

PZgb - Metagabbro (Paleozoic)

Dark-green-to black-weathering massive bodies of metagabbro exposed in rubble crop and small blocky cliffs associated with units OPRt, OPRp, and OPRl (Sainsbury, 1969b). Throughout the unit, igneous textures are retained; grains are partially recrystallized to actinolite, but other igneous minerals are completely recrystallized to a metamorphic assemblage of epidote, albite, chlorite, and small amounts of calcite, titanite, opaque, and stilpnomelane. In western Teller quadrangle, igneous minerals are more completely retained but show undulatory extinction and are cut by brittle cracks; metamorphic actinolite and chlorite occur on cracks and grain boundaries on or near clinopyroxene; small amounts of brown hornblende are considered late magmatic. Plagioclase is partially recrystallized to a very fine mat of brownish material, including sericite. Veins and veinlets of sericite and calcite are present in some samples. A U-Pb zircon crystallization age from one of these less recrystallized bodies, northwest of the York Mountains, is 539 ±11 Ma (table 3; Amato and others, 2009). A detrital zircon sample collected from unit OPRt near the U-Pb zircon sample contains a probability distribution peak near this age (J. Toro, written communication, 2006, 2007), and may represent reworking of gabbroic or related volcanic material. Another sample of unit OPRt, collected from one of its southernmost exposures along the shoreline, contained a single Ordovician conodont. Metagabbro bodies are mapped near that locality, which raises the possibility that there might be two ages of gabbro in unit OPRt: the dated gabbros (earliest Cambrian), and a younger set (Ordovician or younger); OPRt, OPRp, and OPRl (Sainsbury, 1969b). Throughout the unit, igneous textures are retained in thin section. In central Teller quadrangle, east of the York Mountains, relict clinopyroxene grains are partially recrystallized to actinolite, but other igneous minerals are completely recrystallized to a metamorphic assemblage of epidote, albite, chlorite, and small amounts of calcite, titanite, opaque, and stilpnomelane. In western Teller quadrangle, igneous minerals are more completely retained but show undulatory extinction and are cut by brittle cracks; metamorphic actinolite and chlorite occur on cracks and grain boundaries on or near clinopyroxene; small amounts of brown hornblende are considered late magmatic. Plagioclase is partially recrystallized to a very fine mat of brownish material, including sericite. Veins and veinlets of sericite and calcite are present in some samples. A U-Pb zircon crystallization age from one of these less recrystallized bodies, northwest of the York Mountains, is 539±11 Ma (table 3; Amato and others, 2009). A detrital zircon sample collected from unit OPRt near the U-Pb zircon sample contains a probability distribution peak near this age (J. Toro, written communication, 2006, 2007), and may represent reworking of gabbroic or related volcanic material. Another sample of unit OPRt, collected from
one of its southernmost exposures along the shoreline, contained a single Ordovician conodont. Metagabbro bodies are mapped near that locality, which raises the possibility that there might be two ages of gabbro in unit OPRt: the dated gabbros (earliest Cambrian), and a younger set (Ordovician or younger) extinction and are cut by brittle cracks; metamorphic actinolite and chlorite occur on cracks and grain boundaries on or near clinopyroxene; small amounts of brown hornblende are considered late magmatic. Plagioclase is partially recrystallized to a very fine mat of brownish material, including sericite. Veins and veinlets of sericite and calcite are present in some samples. A U-Pb zircon crystallization age from one of these less recrystallized bodies, northwest of the York Mountains, is 539 ±11 Ma (table 3; Amato and others, 2009). A detrital zircon sample collected from unit OPRt near the U-Pb zircon sample contains a probability distribution peak near this age (J. Toro, written communication, 2006, 2007), and may represent reworking of gabbroic or related volcanic material. Another sample of unit OPRt, collected from one of its southernmost exposures along the shoreline, contained a single Ordovician conodont. Metagabbro bodies are mapped near that locality, which raises the possibility that there might be two ages of gabbro in unit OPRt: the dated gabbros (earliest Cambrian), and a younger set (Ordovician or younger). GRI Source Map ID 75659 (SIM-3131).

PZPRI - Metalimestone (Paleozoic and Proterozoic?)

Thinly layered to laminated, orange-and-gray-weathering, color-banded, white to dark-gray metalimestone exposed in a small area south of Grantley Harbor in south-central Teller quadrangle. Layers range from a few millimeters to 6 cm thick and reflect differences in composition and grain size. Darker layers are finer grained, more impure, and contain abundant organic material and white mica, whereas lighter layers are coarser grained and consist mostly of calcite and lesser silt-size quartz grains. The unit has a well-developed cleavage which is axial planar to tight to isoclinal folds, formed at low- or sub-greenschist facies conditions, and a second, lower temperature dissolution cleavage with associated tight folds (Hannula and others, 1995). Calcite-filled tension gashes are common (Hannula and others, 1995). No fossils have been positively identified, although a few forms noted in thin section could be relict bioclasts. Locally, this unit includes interlayers of red-weathering, green phyllite and appears to grade into unit PZPRt. Thinly interbedded lime mudstone and argillaceous limestone is the most likely protolith for PZPRI, which may be a more deformed and (or) metamorphosed correlative of unit Oal and (or) unit OPRt. Equivalent to unit “PZsl” of Hannula and others (1995) and a small part of unit “pCl” of Sainsbury (1972). GRI Source Map ID 75659 (SIM-3131).

PZPRt - Metasiltstone and phyllite (Paleozoic and Proterozoic?)

Metasiltstone, metasandstone, and phyllite that form a small exposure south of Grantley Harbor in central Teller quadrangle. The unit consists of intercalated grayish-green metasiltstone to medium-grained metasandstone, in layers 1 cm to 1 m thick, grayish-green to silver phyllite and silty phyllite, and dark gray to black phyllitic shale. Percentage of these lithologies varies throughout the outcrop belt but metasiltstone and (or) metasandstone generally predominate. Some coarser grained layers appear to be graded, contain parallel laminae, and (or) show local cut-and-fill structures; shaly rip-up clasts as much as 4 cm long occur at several localities. Metasandstone and metasiltstone layers have a semischistose texture and consist mainly of quartz, calcite, and quartz-white mica aggregates (metamorphic lithic clasts?) in a matrix of white mica and chlorite; lesser clast types include feldspar, dolomite, and allanite(?). No fossils constrain the age of the unit, but lithofacies suggest they may be a more deformed equivalent of unit OPRt. Equivalent to part of unit “PZb” of Hannula and others (1995) and a small part of unit “PCs” of Sainsbury (1972). GRI Source Map ID 75659 (SIM-3131).
PZPRh - High-grade metasedimentary and metaigneous rocks (Paleozoic and Proterozoic)

Brown, light-brown, reddish-brown, black, and gray-weathering schist and gneiss exposed in the Kigluaik, Bendeleben, and Darby Mountains. Highest grade metamorphic assemblages are upper amphibolite to granulite grade; assemblages in all three ranges record multiple metamorphic events. Metamorphic foliations range from gneissic to schistose; locally, foliation is lacking and crystallization of metamorphic minerals appears to be static (Till and others, 1986; Lieberman, 1988; Calvert and others, 1999). Lithologically variable on a scale of centimeters and meters, the unit includes pelitic, semi-pelitic, quartzose, calcareous, aluminous, mafic, ultramafic, and graphitic schist and gneiss. Dominant lithologies vary within each mountain range. Till and others (1986) recognized sequences of rocks lithologically similar to those mapped within the Nome Complex in western Bendeleben and northern Darby Mountains. Thurston (1985), Patrick and Lieberman (1988), Hannula and others (1995) and Calvert and others (1999) showed that the high-grade metamorphic event in the Kigluaik Mountains overprinted blueschist-facies assemblages in the Nome Complex. At least part of PZPRh, perhaps a significant part, was originally blueschist-facies rocks of the Nome Complex.

Metamorphic foliations and lithologic layering in the Kigluaik Mountains define a dome, with highest-grade rocks in its core. The earliest-formed metamorphic assemblages known in the range are found at the base of the section, below Mount Osborn. There, garnets in pelitic rocks locally contain kyanite inclusions (Lieberman, 1988); garnet lherzolite occurs as large, meter-scale xenoliths in pegmatite and is present in abundance in glacial moraine (Till, 1980, 1981; Lieberman and Till, 1987). Garnet lherzolite is stable at eclogite facies (Evans, 1977; Spear, 1993). The dominant metamorphic fabric in the Kigluaiks post-dates this high-pressure event and contains peak granulite-facies assemblages. Garnets in lherzolite are partially overprinted by spinel-bearing assemblages stable at granulite facies. Two-pyroxene semipelitic and mafic gneiss, diagnostic of the facies, are also found in the core of the range (Till and Dumoulin, 1994). Most of the rocks in the range crystallized at temperatures above the second sillimanite isograd (above the temperature stability of muscovite; sh. 2; Amato and Miller, 2004). Metamorphic grade decreases towards the flanks of the dome, where biotite-grade metamorphic assemblages overprint low-grade metamorphic assemblages of the Nome Complex (Thurston, 1985; Hannula and others, 1995; Amato and Miller, 2004). Metamorphic isograds along the flanks of the dome are closely spaced (Till, 1980; Patrick and Lieberman, 1988; Miller and others, 1992; Amato and Miller, 2004).

Metamorphic foliations in the Bendeleben Mountains define a dome that spans the area between the large, ovoid pluton in the eastern part of the range and the smaller, irregularly shaped pluton in the west part of the range; the dome coincides with sillimanite-bearing peak thermal assemblages (Gottlieb and Amato, 2008). West of the dome, southwest of Mount Bendeleben, kyanite-bearing assemblages predate sillimanite-bearing assemblages in pelitic rocks (sh. 2; Till and Dumoulin, 1994; Till, unpublished data). Kyanite-bearing assemblages are apparently the oldest in the range.

Metamorphic rocks in the Darby Mountains lack any domal structure; instead, map-scale folds of lithologic sequences with near-vertical axial planes are present where rocks exhibit higher-grade assemblages (Till and others, 1986). In the northern Darby Mountains, units of the low-grade Nome Complex are shallowly-dipping and partially overprinted by biotite-grade metamorphic assemblages (Till and others, 1986). Southward along the crest of the range, kyanite- and staurolite-bearing assemblages occur. Kyanite is texturally older and may be relict of an earlier metamorphic event. Farther south, the appearance of sillimanite and locally sillimanite plus K-feldspar in pelitic schists indicates an increase in metamorphic grade. Metamorphic grade culminates near Mount Arathlatuluk. There, rare two pyroxene schists are diagnostic of granulite facies, and small granitic bodies appear to be anatectic melts (sh. 2). The anatectic granites were formed around 108 Ma (R. Friedman, written communication, 2009). A fault-bounded block of high-grade rocks on the western flank of the Darby range contains similar high-grade metamorphic assemblages (formed above the second-sillimanite isograd) (sh. 2).
In all three mountain ranges, decompression post-dated the thermal peak, and is recorded in aluminum-and iron-rich metasedimentary rocks. In these volumetrically minor but significant rocks, assemblages containing sillimanite or kyanite (± hercynite spinel) and orthoamphibole were overprinted by assemblages containing cordierite and staurolite or garnet (sh. 2). Corona or symplectite textures are common in these rocks. The aluminosilicate plus orthoamphibole assemblage is stable at moderate to high pressures, above about 5 kb, and the cordierite-bearing assemblage is stable at low pressures, below about 5 kb (Spear, 1993). While decompression assemblages apparently formed at about 82 Ma in the Bendeleben range (Gottlieb and Amato, 2008), similar assemblages in the Darby range are probably older: the 100-Ma Darby pluton cross-cuts the metamorphic gradient in the Darby range; andalusite formed in its contact aureole (sh. 2). Andalusite forms at pressures lower than 4 kb.

These high-grade metamorphic rocks are equivalent to generalized units “PZpCh”, “PZpCg”, “PZpCg” and units representing upgraded Nome Complex “Oimh”, “Ocsh”, “OCxh” and “PZpCsh” of Till and others (1986). GRI Source Map ID 75659 (SIM-3131).

PZPRm - Marble (Paleozoic to Proterozoic?)

Light-gray-weathering, coarse-grained pure and impure marble interlayered with unit PZPRh. Commonly massive, though locally meter-thick layers are separated by thin (centimeter-scale) layers of fine-grained impurities. Thin sections show equilibrium metamorphic textures involving calcite, dolomite, phlogopite, tremolite, quartz, scapolite, diopside, and graphite. Equivalent to unit “PZpCm” of Till and others (1986). GRI Source Map ID 75659 (SIM-3131).

PZPRg - Gneiss and orthogneiss (Paleozoic? and Proterozoic?)

Light-brownish-gray, light-orange to gray biotite-plagioclase-quartz gneiss and granitic orthogneiss and minor metasedimentary rocks exposed in rubble crop north of the Oonatut Granite Complex, northwest Bendeleben quadrangle (Hudson, 1979). Fabric in the gneiss is defined by discontinuous layers and lenses of plagioclase and quartz and discontinuous concentrations of biotite. Orthogneiss is fine grained, homogeneous in texture, with foliation defined by aligned and segregated muscovite and minor biotite. Calcite marble layers, less than 10 cm thick, are folded in with the orthogneiss at one locality. Minor hornblende-plagioclase-titanite amphibolite and pelitic metasedimentary rocks are found in southern part of the unit, and close to the Oonatut Granite Complex the metasedimentary rocks contain porphyroblasts of andalusite (Till, unpublished data). Contacts with the Nome Complex are thought to be structural (Hudson, 1979). Equivalent to units “pCgn” and “pCgog” of Hudson (1979). GRI Source Map ID 75659 (SIM-3131).

MI - Limestone, dolomitic limestone, and marble (Mississippian)

Intensely deformed and recrystallized medium-dark-gray carbonate rocks, locally cherty and intercalated with subordinate fine-grained siliciclastic strata, exposed on westernmost tip of Seward Peninsula (Teller quadrangle; Sainsbury, 1972). Unit has been intruded and locally highly altered by the Cape Mountain granite (unit Ktg) and associated tin-bearing fluids (Steidtmann and Cathcart, 1922). A poorly preserved coral fauna of probable Late Mississippian age was obtained from these rocks; it resembles that found in parts of the Lisburne Group (Schrader, 1902; Bowsher and Dutro, 1957) of northern Alaska (Steidtmann and Cathcart, 1922; W. Sando, unpublished fossil report, 1984).

Some authors have correlated rocks of this unit with the Lisburne Group that is exposed north of Seward Peninsula at Cape Lisburne; Grantz and others (1991), for example, included both successions in their
Tigara subterrane of the Arctic Alaska terrane. Sainsbury (1972) interpreted these rocks as having been thrust above the slate of the York region (unit OPRt of this map). Equivalent to unit “MI” of Sainsbury (1972). GRI Source Map ID 75659 (SIM-3131).

Ds - Pelitic schist (Devonian?)

Tors of resistant, well-foliated quartz-rich schist. Pelitic rocks are the dominant lithology; calcareous schist is a minor component. Outcrop appearance of the pelitic schist is diagnostic of the unit, and shows 1- to 2-cm-thick bands of granular interlocking quartz grains interlayered with micaceous schist. In thin section, major minerals include quartz, muscovite, chlorite, chloritoid, and locally graphite, glaucophane and garnet. Quartz-segregation layers parallel foliation and trace intrafolial isoclinal and chevron-style folds axial planar to the foliation. Minor lithologic variation may occur at outcrop scale, typically with relatively thin calc-schist layers in quartz-rich schist.

Four detrital zircon samples were collected; only one yielded sufficient zircons for analysis. The youngest zircon population contains Early to Middle Devonian grains (Till and others, 2006). At least part of the protolith of the unit is Devonian or younger.

Unit thickness is unknown. Typical examples of the unit crop out in northeast Solomon D–5 quadrangle. First described by Smith (1910). Equivalent to unit “PCst” of Sainsbury (1974) and unit “CpCs” of Till and others (1986), and unit “Ds” of Werdon and others (2005a,b) and Newberry and others (2005). GRI Source Map ID 75659 (SIM-3131).

Dcs - Pelitic, calcareous, and graphitic schist (Devonian)

Pelitic, calcareous, and graphitic lithologies interlayered on a scale of centimeters to meters, exposed in central Nome and Solomon quadrangles. Interlayering is gradational and intimate. The unit is composed predominantly of pale brown and gray weakly foliated to well-foliated schists dominated by plagioclase, calcite, quartz, white mica, and graphite. In the central Solomon quadrangle, where calcareous lithologies are subordinate to pelitic lithologies, the unit forms smooth rounded hills, or more commonly, is present in valleys and areas of subdued topography. Rarely forms outcrops; usually forms loose rubble on hills or in stream cuts; in low areas unit is covered by tundra. Ridge-top outcrops and ridge-flanking tors are more common in the Nome quadrangle, but not abundant. The unit may be present but unrecognized in exposures of the Nome Complex north of Kigluaik and Bendeleben Mountains.

Pelitic rocks are light to dark gray weathering and contain pale-colored chloritoid, glaucophane or pseudomorphs of chlorite and albite after glaucophane, and in rare cases, garnet; at some localities, micaceous laminae alternate with quartz-rich laminae. Accessory minerals include epidote, clinozoisite, apatite, tourmaline, sphene, graphite, ilmenite, pyrite, rutile, and zircon. Calcaceous schist is light to dark brownish-gray and commonly contains plagioclase, chloritoid, calcite, some dolomite, and rare garnet. Plagioclase commonly occurs as syn- and post-penetrative deformation metamorphic porphyroblasts. Accessory minerals include apatite, tourmaline, graphite, pyrite, rutile, and zircon. Gray-weathering, plagioclase-rich lithologies are interlayered with orange- or brown-weathering impure marble or calcaceous schist in some localities, mica- and graphite-rich schists in other localities. Layers rich in chlorite and albite, with and without white mica and calcite, are generally less than 0.5 m thick.

The unit includes relatively thin, but widely distributed, layers of light to dark gray or pale orange weathering millimeter-scale color laminated marble. Marbles are slightly impure, most commonly with small concentrations or disseminations of quartz, white mica, and graphite; marbles also can include iron carbonate, iron oxide, and rare sulfide minerals. Less common, but also broadly distributed, are
layers typically less than 20 cm thick of pale tan- to white-weathering metaquartzite with fine laminations defined by minor iron carbonate, iron oxide, and white mica.

Dark-gray- to black-weathering, graphitic metasiliceous rock, locally micaceous, contains millimeter-scale laminae enriched in graphite, white mica, and iron oxide, and occurs in layers meters to tens of meters thick; exposures are generally thinner than the graphitic metasiliceous layers in unit DOx.

In the Nome quadrangle, a dark-gray to black-weathering rock with white millimeter- to centimeter-thick lenses, layers, and irregular blobs of polycrystalline quartz forms layers a meter to several meters thick. Matrix to the quartz concentrations is typically rich in white mica, graphite, chloride, and albite in varying abundances. Many exposures are resistant. Some of the polycrystalline quartz lenses and blobs trace intralfolial isoclinal folds; blobs on fold hinges are more equant. These features and other deformational characteristics of the Nome Complex are consistent with a protolith for Dcs that had quartz-rich alternating with mica-rich layers, although its present appearance is suggestive of a conglomerate. Unit Dcs is equivalent to the “lumpy schist” or unit “pCPzspm” of Bundtzen and others (1994).

A distinctive group of lithologies along the western margin of the unit in the Nome quadrangle coincides with a long, linear resistivity low and magnetic high (Burns and others, 2005a,b). Pale-green- and pale-gray-weathering, locally brown-weathering schists locally display millimeter- to centimeter-thick layers of sugary white quartz. Rocks typically are interlayered concentrations of quartz with lesser iron carbonate and epidote versus white mica, medium-dark colored chloritoid, and locally epidote, iron carbonate, and chlorite. Chloritoid grains may occur in polycrystalline lenses within white mica laminae. Epidote grains contain brown (allanite) cores. Brown-weathering layers are calcareous. This group of lithologies locally contains Zn-Pb mineralization. A lens of carbonate clast conglomerate, 10 to 15 m thick and =15 to 20 m long, sits between this group of distinctive lithologies and the thick pure marbles of unit DOx. The conglomerate is poorly sorted, matrix supported, interlayered with schist; its matrix is calcareous schist that contains abundant quartz and white mica. Clasts are rounded to angular, elongate to disc-shaped, and as much as 75 cm in maximum diameter. Most are light gray to beige dolostone and medium gray marble.

Many detrital zircon samples contain small populations of Middle and Late Devonian zircons and large populations of early-middle Silurian zircons as well as older populations (Till and others, 2006; Till and others, 2008a). Therefore, much or all of the unit is Devonian or younger. Thickness of unit is greater than 1.2 km.

A distinctive marble forms a small lens within or adjacent to Dcs in the Nome quadrangle. The marble is white to light gray, generally impure (5 to 15 percent quartz, 1 to 5 percent white mica), and typically contains sand- to pebble-size clasts of dark gray to black, organic-rich marble. Most clast-bearing intervals appear to be clast supported and some may be graded. Clasts are rounded to angular in shape, commonly laminated, and generally =2 cm in diameter; a few clasts may be as much as 12 cm long. The clast-bearing marble produced conodonts with CAI values of 5 at two localities (table A–1). One collection yielded a single element of Silurian(?) through Triassic age. The other collection, also a single conodont, is an Sb element of late Permian through Triassic (likely Triassic) age.

Three possible scenarios that explain the presence of a Triassic marble in the otherwise Devonian and older Nome Complex include: (1) contamination of the conodont sample; (2) pre-metamorphic fault juxtaposition of Triassic and older rocks; and (3) a pre-metamorphic unconformable relation between Triassic and older rocks. The CAI value of this conodont is consistent with that of other Nome Complex rocks, and no rocks that could have produced such contamination (that is, rocks of known Permian or Triassic age and high thermal level) were being processed in the laboratory at the time the Seward Peninsula sample was run (A. Harris, written communication, 2005). Thus, the clast-bearing (Triassic?) marble was juxtaposed with Dcs before or during Jurassic metamorphism or may be a rare remnant of rocks that sat unconformably atop protoliths of the Nome Complex before those protoliths were
metamorphosed. Because of the uncertainties in the origin of this marble and its uniqueness, we choose not extend the protolith age of the Nome Complex.

Ddm - Dolostone, metalimestone, and marble (Devonian)

Medium- to dark-gray-weathering, dark-gray to black dolostone, metalimestone and marble, with minor associated chert, that typically weathers to fist-sized rubble but forms outcrops along river banks or sea cliffs. Unit Ddm is widely but sparsely distributed through the map area; it crops out in the northwestern and eastern Bendeleben quadrangle and the central and eastern Solomon quadrangle; it is best exposed in sea cliffs in the Solomon C–1 quadrangle. Outcrops are not foliated, but are strongly fractured, commonly brecciated, and may be veined with coarse-crystalline calcite or dolomite. Unit Ddm consists of fine-grained, mostly non-ferroan or slightly ferroan dolomite and subordinate fine- to coarse-crystalline calcite. Dolostone is the dominant lithology in eastern exposures; metalimestone and marble predominate in western and central exposures. Relict sedimentary structures include zebra dolomite, fenestral fabric, and millimeter-scale (algal?) laminations. Thin section textures, where not obscured by recrystallization and dolomitization, are bioclastic and peloidal packstones and wackestones. Early to earliest Late Devonian conodonts have been found in 20 collections; tightest ages are earliest Emsian and latest Emsian-earliest Eifelian (table A–1). A megafauna of late Early, Middle, and early Late Devonian age consists of tabular and rugose corals, stromatoporoids, brachiopods, and rare bryozoans. Megafauna, microfauna, and sedimentary features all denote a warm, relatively shallow water depositional setting. Age and spatial relations suggest that Ddm may have been unconformably deposited on older parts of the Nome Complex, specifically units DOx and DCbm. Lithofacies and faunal data indicate that Ddm correlates well with the youngest strata in the Baird Group (Tailleur and others, 1967; Dumoulin and Harris, 1994) and related rocks in western and central Brooks Range (units “Dob” and “Doc” of Till and others, 2008b) and may also correlate with the Beaucoup Formation (Dutro and others, 1979) and related rocks found throughout the Brooks Range (units “Dl” and “Dmu” of Till and others, 2008b). Equivalent to unit “Ddm” of Till and others (1986) and partly equivalent to unit “Ddl” of Miller and others (1972).

Deg - Granitic ortho gneiss (Devonian)

Fine-grained, very light gray to orange-weathering, well-foliated, white to light tan schist of granitic to totalistic composition that forms the rounded, frost-riven slopes of Kiwalik Mountain and one small body in northern Derby Mountains. Commonly forms weathered boulders 0.5–1 m across. Crops out rarely; where foliation can be measured, it is parallel to the foliation in the surrounding schist. Contact crosses lithology layering in surrounding schist. Layers and bobbins of the ortho gneiss which have chilled margins are commonly found in country rock close to the contact. Quartz, albite, K-feldspar, and white mica are the most common constituents. Accessory minerals include biotite, epidote, fluorite, magnetite and calcite. The unit yielded a U-Pb zircon age of 391±3 Ma (J. Aleinikoff, written communication, 2005; Till and others, 2006). A small body associated with unit DOx in the northern Derby Mountains yielded an age of 390±4 Ma (Tarlo, written communication, 2006); a foliated body with a similar age was found in the high-grade metamorphic rocks of Bendeleben Mountains (Gottfried and Amatol, 2008). Middle Devonian granitic ortho gneiss (also approximately 390 Ma) is known in eastern Brooks Range in a metamorphic belt with a similar history to the Nome Complex (Aleinikoff and others, 1993; Moore and others, 1997). Granitic ortho gneiss with similar, but less well-defined age, is present in central Brooks Range and southern Ruby gneiss (Tarlo and others, 2002; Patton and others, 1987; Rosie and others, 1995).
Df - Felsic schist (Devonian)

Light-orange to light-green-weathering, fine- to coarse-grained quartz-feldspar white mica schist. Crops out on the southwest flank of Kiwalik Mountain as platey rubble-crop of millimeter-scale laminated, very fine grained schist. Rarely, accessory black tourmaline lies in plane of foliation. Stream gravels along strike to the northwest of the rubble crop include a rock which has the appearance of a flattened matrix-supported conglomerate or fragmental volcanic, composed of clasts and matrix of the major minerals listed above. Clasts show greatly varying grain size and internal textures. U-Pb zircon age from laminated schist on the flank of Kiwalik Mountain is 391±5 Ma (J. Aleinikoff, written communication, 2005; Till and others, 2006); the fact that the schist contains a single zircon population supports an igneous protolith for the unit. The contact between Df and other parts of the Nome Complex may be a fault. Two metafelsites of essentially identical age were identified in eastern Brooks Range, where metafelsites occur in sections of rocks less metamorphosed than the Nome Complex (Aleinikoff and others, 1993; Moore and others, 1997).

DSI - Limestone (Devonian and (or) Silurian)

Light-gray-weathering, medium-dark-gray limestone exposed in a small, fault-bounded area in central Teller quadrangle. Lithofacies include cherty lime mudstone, peloidal wackestone, and lesser coralline packstone. Lower beds produced relatively long-ranging conodonts but upper beds yielded conodonts of middle Silurian (middle Wenlock) age and Silurian (probably middle to late Silurian) corals; the fauna indicates a warm, relatively shallow water, normal-marine depositional setting (table A–1; W. Oliver, unpublished fossil report, 1974; Till and Dumoulin, 1994). DSI has also yielded corals thought to be of probable Middle or Late Devonian age (Oliver and others, 1975); the age of this collection was later revised to late Silurian (late Ludlow)-early Late Devonian (Frasnian), probably late Silurian to Early Devonian, by A. Pedder (Dumoulin and Harris, 1994; Till and Dumoulin, 1994). This revised age is younger than that of any other definitively dated lower Paleozoic rocks in the York terrane. Lithology and age of unit broadly correlate with all or parts of units SOdl and Soul of the York terrane and units Sd, DOx (overlay), and Ddm of the Nome Complex. Equivalent to unit “Dl” of Sainsbury (1972). GRI Source Map ID 75659 (SIM-3131).

DOx - Mixed marble, graphitic metasiliceous rock, and schist (Devonian to Ordovician)

Interlayered pure and impure marble, graphitic metasiliceous rock, pelitic schist, calc-schist, and mafic schist. Gray- and orange-weathering marble and dark gray-black-weathering graphitic metasiliceous rock are the most common lithologies in the unit, which is dominated locally by one or the other. Gray-weathering pure marble forms rounded ridgelines that extend along strike for several kilometers, and rounded hills of slabby, black graphitic metasiliceous rock can be recognized from great distances. The unit is defined by its position structurally below the Casadepaga schist (unit Ocs). Good exposures are rare; minor lithologies generally do not crop out. Lithologies thicken and thin along strike on a scale of kilometers, a feature which may be depositional as well as structural.

In western Solomon quadrangle and Nome quadrangle, there is a consistent general stacking pattern of lithologies within DOx. The structurally upper part of the unit is composed of mixed schist and marble, including pelitic schist, gray marble, orange-weathering impure marble, black schistose marble, and black metasiliceous rock; these lithologies are interlayered on a scale of meters and decameters. The uppermost lithology is commonly an orange-weathering marble that varies from pure to impure on a scale of meters. Impurities include chlorite, quartz, tremolite, and albite; impure layers also include intraclasts, most 3 cm or less in diameter. One of the pure marble layers yielded Ordovician conodonts.
Other impure marbles in the upper part of DOx also contain intraclasts. Total thickness of the mixed schist and marble sequence varies from 250 m to over 2 km. The structurally lower parts of the unit are dominated by gray marble or black metasiliceous rock. Where the gray marble is dominant, it reaches thicknesses of 1–2 km and contains minor thin (less than 50 m) layers of metaquartzite, pelitic schist, and chlorite-albite schist. Where the black metasiliceous rock is dominant, it reaches thicknesses of around 500 m and is underlain by 10–30 m of gray marble interlayered with thin bands of pelitic schist.

Metabasites are found in both the mixed schist and marble sequence and within the thick, unit-dominating gray marble and black metasiliceous rock. These mafic rocks are boudins or layers of glaucophane-, epidote-, and garnet-bearing metabasite, or chlorite-, albite-, actinolite-bearing metabasite similar to those found in the Casadepaga schist. Within DOx, they occur in greatest volume south of Salmon Lake near the boundary between the Nome and Solomon quadrangles.

The gray-weathering pure marble is pale gray to white on the fresh surface, and composed of coarse crystalline calcite. The graphitic metasiliceous rock is generally homogeneous, dark-gray or black, and compositionally limited to quartz, graphite, and very small amounts of white mica, albite, and chlorite. Graphite may be present in sufficient quantities to rub off on the hands. Locally a centimeter-thick banding of dark gray-black quartz-graphite schist and gray-black quartz-graphite-calcite schist are found.

In Nome quadrangle, DOx contains several small rubble patches of carbonate conglomerate, as well as rubble and outcrops of light gray dolostone, locally mottled with orange, pink, or light brown, that retain relict sedimentary features. Conglomerate is matrix supported and contains rounded to angular clasts, as much as 8 cm long, of pale-orange to medium-gray dolostone; at one locality, the unit contains subordinate clasts of marble and quartz-white mica schist. The matrix is beige to orange pink or light brown dolomite with lesser quartz and white mica. Relict textures, seen in conglomerate clasts and in mottled dolostone rubble, include coated grains, crinoid ossicles, and possible brachiopod fragments.

In northwestern Solomon quadrangle, DOx contains an interval of dolostone-clast conglomerate as much as 100 to 200 m thick and 480 m in lateral extent. The conglomerate ranges from matrix-supported (1 to 10 percent clasts) to clast-supported (>80 percent clasts) and contains interlayers and (or) lenses of clast-free schist and dolostone. Clasts are rounded to irregular; most have a flattened, ovoidal shape but some are rod-like. Sorting is poor; clasts range from a few millimeters to 70 cm in maximum dimension. Some clasts are finely laminated. Most clasts consist of light-gray- to rusty-weathering, very light gray, fine-grained ferric dolostone with minor amounts of quartz, white mica, and calcite. About 1 to 5 percent of clasts are medium light gray marble. The conglomerate matrix is quartz schist that also contains white mica, dolomite, chlorite, epidote, and chloritoid. A less extensive (several meters thick by 10 m long) but otherwise similar lens of dolostone-clast conglomerate occurs in unit Ocs in the Nome quadrangle. The dolostone clasts at both localities resemble, and may have been derived from, dolostone equivalent to that in unit Cd.

The age range of DOx is not strictly known. Conodonts of Ordovician age were obtained from a pure layer in the impure marble at the structural top of DOx (in the Solomon quadrangle). Marble in the Nome quadrangle produced conodonts of early Paleozoic age (table A–1, T. Carr and T. Hudson, written communication, 1982, 1984). Recrystallized radiolarians collected in northern Darby Mountains in banded calcite-bearing graphitic metasiliceous rock are of probable pre-Devonian age (B.K. Holdsworth, written communication, 1985).

In the Teller quadrangle, part of the unit (shown with the diagonal line overlay) is distinct in age and lithology. Dolostone, dolomitic marble, and marble form an elongate belt, extending for almost 40 km, in the westernmost part of DOx in eastern Teller quadrangle; only the southern half of the belt has been examined. The unit forms rubble-covered hills; outcrops are rare. Dolostone is medium gray to dark gray and weathers light to medium gray, very pale orange, or dark yellow brown. Sedimentary structures
include millimeter- to centimeter-scale parallel lamination and lesser color mottling that likely reflects bioturbation. Intraclasts (maximum 1 cm in diameter) and millimeter-scale burrows occur locally. In thin section, dolostone is mostly finely crystalline and non-ferroan; some samples contain minor amounts of fine-grained quartz and white mica, or rare clasts (bioclasts?). Marble is white to grayish black and has few relict sedimentary features other than locally well-developed parallel lamination. Conodonts of late Silurian-Devonian age have been recovered from two localities; a third locality produced a fauna of Silurian (late Llandovery-Ludlow) age (table A–1). Sedimentary structures and conodont biofacies suggest a warm, shallow-water depositional setting. Faunal and lithofacies data indicate that these rocks may correlate, at least in part, with unit Sd in the Nome Complex. Correlation with units Ddm and SOdl and Soul (York terrane) is also possible, although these units contain more abundant megafossils than DOx with diagonal line overlay. Shallow-water Silurian rocks also occur widely in the Brooks Range. Units that contain such strata and could correlate, at least in part, with DOx (overlay) include units “Dob” (Baird Group), “Doc”, and “DSc” of Till and others (2008b); Silurian lithofacies in unit “DSc” are an especially good match. Unit DOx (with overlay pattern) is equivalent to parts of units “PZm” and “pCn” of Sainsbury (1972).

Three detrital zircon samples have been collected from DOx in southern Seward Peninsula. One yielded largely Neoproterozoic zircons, another yielded zircon populations as young as Silurian, and the third yielded a robust population of Middle and Early Devonian zircons (Amato, written communication, 2008). Apparently, at least part of DOx must be Devonian or younger.

On the eastern edge of the map area, on the boundary of Norton Bay and Candle quadrangles, exposures of metasedimentary rocks include calcareous, pelitic, and quartz-rich lithologies. These rocks have not been studied in detail; some may ultimately prove to have histories separate from the Nome Complex. These rocks are equivalent to units “PZPRus” and “MZPZq” of Patton and others (2005).

Unit DOx is between 0.8 to 1.5 km thick, and best exposed in eastern Solomon D–5 quadrangle and in east-central Solomon D–6 quadrangle. The unit includes parts of units “PCs” and “slate of the York region” of Sainsbury (1974). GRI Source Map ID 75659 (SIM-3131).

DObm - Black metalimestone and marble (Devonian to Ordovician)

Dark-gray to black metalimestone and marble and subordinate dolostone exposed on sea cliffs on Kotzebue Sound. Rocks weather gray to yellowish-brown, commonly have fissile partings, and are well layered. Layers range from 2 to 50 cm thick, with rhythmic alternation of thicker, coarse-crystalline and thinner, fine-crystalline layers. Relict sedimentary structures include graded bedding, flame structures, loaded bed bottoms, channelized beds, and imbricated rip-up clasts. Three kilometers west of Cape Deceit, a 15- to 20-m-thick interval of dominantly matrix-supported carbonate breccia, with rounded and angular clasts as much as 5 m in diameter, occurs in the section, as well as thinner (=1 m thick) intervals of carbonate-clast breccia. Local solution collapse features occur, and dedolomitization textures were seen in thin sections. Subordinate argillite, phyllite, and radiolarian chert are found about 2.4 km west of Cape Deceit; quartz-graphite schist and impure marble (containing as much as 20% graphite, quartz, albite, and white mica) are abundant in the western exposures.

Unit DObm has yielded tightly dated fossil collections of Middle Ordovician through late Silurian age and some longer ranging collections that could be as young as Devonian (table A–1; Ryherd and Paris, 1987). The argillite-dominated interval west of Cape Deceit contains abundant Middle and Late Ordovician graptolite assemblages as well as Ordovician conodonts (Ryherd and Paris, 1987; Harris and others, 1995; Ryherd and others, 1995; Dumoulin and others, 2002). Higher in the unit, a continuous section of allodapic carbonate rocks, at least several hundred meters thick, produced a middle to late Silurian (Wenlock to Ludlow) conodont succession (table A–1; Dumoulin and others, 2002). Several
conodont collections from the eastern exposures of the unit could be as young as Devonian (table A–1). Well-layered metalimestone containing redeposited (?) rugose and colonial corals of Middle to Late Devonian age have been described from Willow Bay, 20 km east of Cape Deceit (Kotzebue A–1 quadrangle); these rocks may be part of DObm (T. Ryherd, written communication, 1985).

Two small gabbroic plugs intrude DObm west of Cape Deceit. The plugs show relict ophitic textures and are partially recrystallized to a low-grade metamorphic assemblage of actinolite, epidote, and garnet. CAI values of conodont assemblages in this unit range from 5.5–7 (table A–1) and may reflect the presence of hydrothermal fluids.

Unit DObm represents periplatform ooze, turbidites, and debris flow deposits derived from a carbonate platform that accumulated in slope and basinal environments (Dumoulin and Till, 1985; Ryherd and Paris, 1985, 1987; Harris and others, 1995; Dumoulin and others, 2002). It correlates, at least in part, with unit DCbm and is intercalated with, and possibly a facies equivalent of, unit DCks. DObm is lithologically similar to, and at least partly coeval with, Silurian carbonate and siliciclastic turbidites in the west-central Brooks Range (unit “Spl” of Till and others, 2008b). It also correlates in part with Middle Ordovician-lower Silurian graptolitic argillite and quartz-rich turbidites of the Iviagik Group of Martin (1970) that are exposed south of Cape Lisburne (Grantz and others, 1983; Moore and others, 1994, 2002; Harris and others, 1995). Equivalent to unit “DObm” of Till and others (1986), and partly equivalent to units “MI?”, “pCl”, and “PZm” of Hudson (1977) and the Deceit Formation of Ryherd and Paris (1987). GRI Source Map ID 75659 (SIM-3131).

DCks - Calcareous schist of Kwiniuk Mountain (Devonian to Cambrian)

Dark-brownish-gray, rust-spotted, well-foliated, medium-grained schist composed predominantly of quartz, calcite, white mica, chlorite, plagioclase, and graphite. Locally shows millimeter-scale dark/light layering. Rusted spots (weathered iron carbonate?) up to 0.5 cm across are locally abundant. Fresh surfaces are gray. Interlayered on a meter to kilometer scale with units DObm and DCbm; age assigned to this unit based on that intimate relation. On Kotzebue Sound, unit is exposed in beach cliffs at Sullivan Bluffs (15 km west of Cape Deceit), where it shows relict crossbedding and graded bedding, and contains abundant pyrite. Equivalent to unit “DCks” of Till and others (1986). GRI Source Map ID 75659 (SIM-3131).

Sd - Dolostone (Silurian)

Light-gray- to tan-weathering, light- to dark-gray, fine-grained, ferroan dolostone that forms two small rubble-covered hills, one in southeastern Bendeleben quadrangle and the other in southeastern Solomon quadrangle. At the northern locality, the main lithology occurs with lesser amounts of black dolostone and black marble. Color motting, likely due to bioturbation, is notable at the southern occurrence. Other features of unit include possible fenestral fabric and relict bioclasts. Gray dolostone at both localities yielded conodont faunas of middle-late Silurian age (table A–1). Sedimentary structures and conodont biofacies indicate a shallow, warm-water depositional environment. Several other lithologically similar dolostones in southeastern Bendeleben and northeastern Solomon quadrangles contain Silurian-Early Devonian conodonts; these occurrences are presently mapped as unit PZd but may, at least in part, belong to Sd. Shallow-water Silurian strata that correlate, at least in part, with Sd include units DOx (overlay) in the Nome Complex, SOdl and Soul in the York terrane, and the Baird Group (Tailleur and others, 1967; Dumoulin and Harris, 1994) and related units in the western and central Brooks Range (units “Dob” and “Doc” of Till and others, 2008b). Equivalent to unit “Sd” (northern locality) and part of unit “PZd” (southern locality) of Till and others (1986). GRI Source Map ID 75659 (SIM-3131).
SOdl - Dark limestone (Silurian and Upper Ordovician)

Medium- to thick-bedded, light-brown to dark-gray limestone, dolomitic limestone, and dolostone, locally cherty, commonly very fossiliferous, exposed in a fault-bounded area in northeastern York Mountains (Teller quadrangle; “section on Don River” of Sainsbury and others, 1971).

Ordovician rocks, at least 120 m thick, consist of wackestones and packstones, with peloids and skeletal grains in a micritic matrix. Fossils are Late Ordovician and include conodonts (table A–1; Dumoulin and Harris, 1994), corals (Oliver and others, 1975; R.J. Elias in Blodgett and others, 2002, p. 283), trilobites (Ormiston, 1978; Ormiston and Ross, 1979), and brachiopods, cephalopods, gastropods, ostracodes, pelecypods, and stromatoporoids (Sainsbury, 1969a; Sainsbury and others, 1971; Rohr, 1979, 1988; Potter, 1984; Rohr and Potter, 1987; Rohr and others, 2003). Rugose corals (Bighornia) indicate a possibly Richmondian age (Dumoulin and Harris, 1994).

The Silurian section, at least 220 m thick, consists mainly of mudstone and bioclastic wackestone and packstone and contains more dolostone than the Ordovician part of the unit. Shallowing-upward cycles, 5 to 8 m thick, occur throughout. Megafossils form local buildups and include corals (Oliver and others, 1975), stromatoporoids, bryozoans, and brachiopods of middle and late Silurian age (Sainsbury and others, 1971). Biostratigraphically diagnostic conodonts are of early and earliest late Silurian ages (table A–1; Dumoulin and Harris, 1994; Till and Dumoulin, 1994).

Features such as fenestral fabric, micritized bioclasts, algal lamination, conodont biofacies, and the abundance and diversity of corals and stromatoporoids all indicate that SOdl was deposited in warm, shallow to very shallow water in a locally restricted platform setting. Ordovician conodonts and megafossils include both Siberian and Laurentian (North American) endemic forms (Dumoulin and Harris, 1994; Blodgett and others, 2002; Dumoulin and others, 2002). Silurian fossils are mainly cosmopolitan.

Unit SOdl is at least partly correlative with unit Soul; it is also partly correlative with, but much more fossiliferous than, Silurian metacarbonate rocks in units Sd and DOx (overlay) of this map. Faunas and lithofacies of SOdl correlate well with those from age-equivalent strata in the Baird Group (Tailleur and others, 1967; Dumoulin and Harris, 1994) and related units in western and central Brooks Range (units “Dob” and “Doc” of Till and others, 2008b) and of the Telsitna Formation and related rocks in the Farewell terrane of interior Alaska (Dumoulin and Harris, 1994; Dumoulin and others, 2002). SOdl is equivalent to units “SOdl” and “Sl” of Sainsbury (1969a, 1972). GRI Source Map ID 75659 (SIM-3131).

Soul - Limestone and dolostone, undifferentiated (Silurian and Ordovician)

Carbonate rocks equivalent to unit Ols and (or) unit SOdl, but less well studied than those units; exposed in three small fault-bounded areas in central part of the Teller quadrangle. The western and central exposures are limestone with corals of Late Ordovician (Sainsbury, 1969a,b; Sainsbury and others, 1971) or late Middle to early Late Ordovician (Oliver and others, 1975) age. The eastern exposure is near the eastern boundary of the York terrane and consists of very fine-grained, locally cherty, gray dolostone that contains long-ranging conodonts, domal to lamellar stromatoporoids, and diverse tabulate and rugose corals of Silurian, probably late Llandovery-Wenlock age (table A–1). Conodonts from this locality have a CAI value of 5, one of the highest known from the York terrane (table A–1). Equivalent to unit “Oum” of Sainsbury (1969a,b, 1972). GRI Source Map ID 75659 (SIM-3131).
Ocs - Casadepaga Schist (Ordovician)

Light-green, silvery green and greenish-brown mafic, feldspathic, and calcareous schist. Typically occurs as frost-riven slabs and flakes that underlie rounded hills and dark-greenish-black tors and rubble piles several meters across. Tors of metabasite, abundant plagioclase porphyroblasts in dark-green, chlorite-rich schist, and the quartz-poor nature of the rocks are characteristic of this unit. The most common lithologies are dominated by components of mafic, feldspathic, and calcareous composition that are intermixed and interlayered on a scale of tens of centimeters; the layering may occur in repetitive couplets.

Medium- to pale-grayish-green-weathering pelitic schists are common. Plagioclase, chlorite, white mica, and quartz in subequal amounts dominate; epidote, carbonate, and glaucophane (or pseudomorphs of chlorite and plagioclase after glaucophane) are typical. Titanite (sphene), rutile, and sulfides are present in minor amounts. Based on major element chemistry, the protoliths were shales and graywackes (Werdon and others, 2005a). Carbonate-rich schists or layers are typically buff or pale brown weathering and tend to be more recessive in outcrop than other lithologies. Carbonate layers are rare and thin and include both pure and impure varieties; they weather pale brown, black, or gray. Dark-green-weathering schists are rich in chlorite, epidote, actinolite, and plagioclase, and represent metamorphosed mafic material. Dark-green-weathering chlorite-rich schists spotted with white equant plagioclase grains typically contain few to no calcium-bearing phases. These are probably mafic rocks that were altered or weathered previous to metamorphism.

Boudins, lenses and layers of fine- to coarse-grained, massive metabasite comprise the greenish-black tors. In thin section these rocks are found to be composed of glaucophane, actinolite, chlorite, epidote, garnet, albite, white mica, titanite, and locally quartz, Fe-carbonate, pyroxene, and barroisite. Coarser grained varieties have textures suggestive of a coarse-grained gabbroic protolith. Mafic schist layers in the surrounding rocks have mineral assemblages similar to the metabasite pods. The metabasites comprise two compositional groups (Werdon and others, 2005a,c). One group has weakly developed arc-like signatures (for example, slight Nb depletion in spidergrams) reflecting crustal contamination; the second group exhibits features associated with enriched mantle (E-MORB) and alkaline intercontinental rifts (no Nb depletion, small positive Ti anomalies in spidergrams) (Ayuso and Till, 2007). Metabasites from unit DOx fall into the same two compositional groups. The chemical characteristics are thought to indicate a tectonic setting related to the early stages of continental, rift-related magmatism (Ayuso and Till, 2007).

In western Solomon quadrangle, the contact between Ocs and the overlying impure marble unit (Oim) is exposed. Near the contact, on all sides of a synform cored by Oim, a thin (few meters – tens of meters) layer of black weathering, platey, fine grained and finely laminated quartz-graphite schist is present. The amount of graphite in the rock is variable, though it is always black-weathering; thin laminae of lenses (mm- to cm-scale) that are more quartz-rich are common. Graphite is present as fine disseminated material in the quartz-rich matrix, as well as in lozenges several millimeters across. White mica is disseminated and minor. Semi-quantitative spectrographic analyses of a few samples from this layer show elevated values of Mo, V, Ag, and Zn (B. Gamble, written communication, 1985). Thin layers of mafic schist separate the graphitic layer from the overlying impure marble.

No direct evidence exists for the depositional age of Ocs. Seven detrital zircon samples collected from widely distributed parts of the unit contain very similar grain populations. Most grains fall into the range of 600–700 Ma; several samples contain small populations of Ordovician or Cambrian grains (Amato and others, 2003a; Till and others, 2006; 2008a).

Depositional age of the unit must be younger than 600 Ma (latter part of the Neoproterozoic), and is likely Ordovician or younger. Werdon and others (2005a) considered the unit to be Cambrian in age, based on an Rb-Sr isochron. The samples included in the isochron are a mix of mafic and pelitic rocks,
so their assumption that the samples shared the same initial strontium isotopic composition is likely not correct; the isochron represents a mixing line between mafic and sedimentary protoliths.

Unit Ocs is assigned an Ordovician age based on detrital zircon geochronology and on the occurrence in both this and the impure marble unit (Oim) of both metabasite schist layers and unfoliated metabasite pods. The protoliths of both units apparently contained pyroclastic or redeposited mafic material as well as intrusive mafic rocks. Metabasite layers indicate that production of mafic material was at latest syn-depositional – not simply post-depositional. We postulate that units Oim and Ocs were formed in the same basin. Because the impure marble unit yielded Early through Middle Ordovician conodonts, we believe that basin was formed during the Ordovician.

The unit is 0.6 to 1.6 km thick and is best exposed in southeastern Solomon D–5 quadrangle, north of the Nome-Council road; in central Solomon D–5 quadrangle; and in east-central Solomon D–6 quadrangle. The Casadepaga schist was named and first described by Smith (1910). Partially equivalent to the “slate of the York region” of Sainsbury (1974), and unit “PCqms” of Miller and others (1972); equivalent to unit “Ocs” of Till and others (1986). GRI Source Map ID 75659 (SIM-3131).

Oim - Impure chlorite marble (Ordovician)

Buff- to orange-weathering, chlorite-, white mica-, and albite-bearing calcite marble that underlies rounded hills. Rare outcrops show well-foliated impure marble to calcareous schist. Impurities are most commonly chlorite and albite. Lenses (up to a meter across) and fine layers of chlorite and albite are diagnostic of the unit, and trace foliation and folds. Chlorite-albite lenses and layers are more abundant near the base of the unit; pods of fine-grained metabasite are also more common in the lower part of the unit. The pods can be recognized in the field as piles of massive, medium-gray rubble several meters across; one is 0.5 km across. Intraclasts occur in some exposures and are typically composed of black calcite and no more than 4 cm in diameter. Most commonly they are a minor component of the rock, but locally are concentrated in centimeters-thick layers. In rare instances the unit may include layers of pure marble or orange-weathering dark-gray dolostone. The unit is a minimum of 1.2 km thick. Conodonts of Early through Middle Ordovician age have been obtained from a dolostone lens in the upper part of the unit in Solomon D–6 quadrangle (84ATi281, table A–1). Excellent exposures of the unit can be found in central Solomon D–6 quadrangle. Equivalent to units “PCsm” of Miller and others (1972); “pCl” of Sainsbury (1974); and “Oim” and “PZim” of Till and others (1986). In western Solomon quadrangle, the contact of Oim with underlying unit Ocs is marked by a lens of graphitic siliceous rock a few meters thick. Outcrops are black. Quartz and graphite vary in relative concentration, and yield a finely laminated appearance. Fine white mica and sulfide minerals are present in minor amounts. Semi-quantitative spectrographic analysis of these rocks shows they contain elevated amounts of Mo, Ag, Zn, and V. GRI Source Map ID 75659 (SIM-3131).

Ols - Limestone and shale (Ordovician)

Thin- to medium-bedded, pale-orange- to pale-yellow-brown-weathering, medium-gray to black limestone, dolomitic limestone, and dolostone with local shale and chert nodules. Unit Ols forms subdued slopes within, north of, and east of the York Mountains; the unit is generally fault bounded, but locally depositionally overlies unit Ol. The lower 7 to 30 m of Ols is fissile black shale and lesser interbedded black limestone and dolomitic limestone that contains calcified and pyritized radiolarians and sponge spicules (T. Carr and T. Hudson, written commun, 1982; Dumoulin and Harris, 1994). Lower strata grade upward into flaggy, thin-bedded black limestone with shaly partings and soft-sediment deformation features, and then into thin-bedded, sparsely bioclastic limestone and dolostone that is graded, crossbedded, and bioturbated. Ols is at least 300 m thick (Dumoulin and Harris, 1994), and it appears to
contain the Early-Middle Ordovician boundary near its base (Dutro in Ross and others, 1982). The unit produced pandemic, cool-water conodonts of earliest Middle Ordovician (latest Arenig and earliest Llanvirn) age (table A–1; Dumoulin and Harris, 1994), as well as cephalopods, graptolites, gastropods, and trilobites (Ross, 1967; Sainsbury, 1969b; Dutro in Ross and others, 1982). The youngest beds in Ols occur in a small klippe, 0.5 km in diameter, west of the Mint River in the northwestern York Mountains (unit “Odl” of Sainsbury, 1969b) and consist of medium-bedded, mottled to laminated, gray to brown lime mudstone and dolostone that contain conodonts, corals, and cephalopods of late Llanvirn age (Flower, 1968; Sainsbury, 1969b; Dumoulin and Harris, 1994). Bedforms, sedimentary structures, and faunas indicate that Ols was deposited in a shallowing-upward, basin to peri-platform environment; the youngest strata accumulated in a mid- to outer-platform setting (Dumoulin and Harris, 1994).

Lithofacies and biofacies of Ols correlate well with those of deeper water Middle Ordovician strata in the western and central Brooks Range (unit “OPRc” of Till and others, 2008b; Dumoulin and Harris, 1994). Equivalent to units “Os” and “Oshd” of Sainsbury (1969a), “Oshl” and “Oshd” of Sainsbury (1969b), and “Oshl” and “Oshd” of Sainsbury (1972). GRI Source Map ID 75659 (SIM-3131).

Od - Dolostone (Ordovician)

Light-gray- to pink- to tan-weathering, gray to tan dolostone that forms small areas of rubble crop in tundra and local cliffs along river banks. Unit is best exposed along several rivers in northeastern Bendeleben quadrangle, but also crops out at isolated localities in northwestern and southeastern Bendeleben quadrangle and northwestern Solomon quadrangle. Depositional relations between Od and other units are nowhere preserved, but map patterns suggest possible associations with units Oim and Ddm. Unit Od consists of fine-grained, mostly non-ferroan dolomite. Relict sedimentary features include: distinct color-mottling, reflecting an original partly bioturbated fabric; zebra dolomite, suggestive of evaporitic supratidal conditions; fenestral fabric, which generally occurs in tidal flat or shallow subtidal environments; and probable oncolites, which also indicate a shallow-water depositional environment. Conodont faunas represent at least three distinct ages: two discrete intervals in the Early Ordovician, and early to middle Middle Ordovician (table A–1). Most of the assemblages represent shallow to very shallow, warm-water biofacies, but one collection of middle to late Early Ordovician age from the Bendeleben D–2 quadrangle denotes a cooler and (or) deeper water setting (table A–1). A single collection of poorly preserved corals has also been obtained (Till and others, 1986). Most conodonts in Od are cosmopolitan forms, but Siberian and Laurentian (North American) endemics occur in a few collections (Dumoulin and others, 2002). The older (Early Ordovician) part of Od correlates with much of units Oal, Ol, and OPRi in the York terrane; Middle Ordovician strata in Od are coeval with, but represent shallower water facies than, unit Ols in the York terrane. Od also correlates well in age and lithology with Early and Middle Ordovician rocks of the Baird Group (Tailleur and others, 1967; Dumoulin and Harris, 1994) in the western Brooks Range (unit “Dob” of Till and others, 2008b). Od strata that contain cooler and (or) deeper water biofacies resemble coeval deeper water rocks in unit “OPRc” (Till and others, 2008b) in the Baird Mountains quadrangle. Equivalent to unit “Od” of Till and others (1986). GRI Source Map ID 75659 (SIM-3131).

Ol - Limestone (Ordovician)

Mainly massive to thick-bedded, light-brownish-gray to medium-gray, fine-grained limestone with local chert nodules and lesser interbeds of argillaceous limestone and shale, widely exposed in and adjacent to the York Mountains in western and central Teller quadrangle. Unit Ol is at least 450 m thick (Dumoulin and Harris, 1994); it resembles unit Oal in containing 8- to 15-m-thick shallowing-upward cycles (Vandervoort, 1985) and locally abundant trace fossils, but differs in containing more megafossils and lacking quartzose grainstone and ripple marks. Common rock types include lime mudstone, bioclastic wackestone, and fine grained to very fine grained peloid and intraclast grainstone. The upper
70 m of the unit is a distinctive blue-gray-weathering, white to pinkish-gray lime mudstone with rare trilobite fragments. Most exposures of Ol are bounded by faults, but at a few localities it appears to grade upward into unit Olsh. Sainsbury (1969b) suggested that Ol conformably overlies unit Oal, but megafossil and conodont data suggest that the lower part of Ol may be coeval with much of unit Oal. Unit Ol is chiefly of Early Ordovician (early and middle Arenig) age. The tightest ages are based on conodonts and include collections restricted to the Mac. dianae, Ac. deltatus-On. costatus, lower Oe. communis, and Re. andinus-T. laevis Zones (table A–1); the two youngest of these collections are from near the top of Ol and are definitively younger than any faunas recovered from unit Oal. Megafossils in Ol include brachiopods, cephalopods, echinoderm debris, gastropods, and trilobites (Ross, 1965; Flower, 1968; Sainsbury, 1969b). Graptolitic shale of early Arenig age (T. fruticosus Zone; Carter, 1994, unpublished fossil report) forms local lenses in Ol.

Lithofacies and biofacies indicate that Ol accumulated in a range of subtidal to supratidal environments within a deepening-upward regime (Dumoulin and Harris, 1994); overall, Ol appears to have formed in somewhat deeper water than unit Oal. Conodont assemblages in Ol include both Siberian and Laurentian (North American) endemic forms (Dumoulin and Harris, 1994; Dumoulin and others, 2002); trilobites have Siberian affinities (Ormiston and Ross, 1979). Unit Ol correlates well with older parts of unit Od in the Nome Complex and the Baird Group (Tailleur and others, 1967; Dumoulin and Harris, 1994) in the western Brooks Range (unit “Dob” of Till and others, 2008b), and with the Novi Mountain Formation, lower Telstina Formation, and related rocks in the Farewell terrane of interior Alaska (Dumoulin and Harris, 1994; Dumoulin and others, 2002). Equivalent to units “Ol” and “Olu” of Sainsbury (1969a,b, 1972). GRI Source Map ID 75659 (SIM-3131).

Oal - Argillaceous limestone and limestone (Ordovician)

Thin-bedded, argillaceous, silty and (or) dolomitic limestone, lesser massive micritic limestone, and local chert; rocks are light gray to medium gray and weather light gray to orange to tan. The unit is widely exposed in and adjacent to the York Mountains in western and central Teller quadrangle, and is at least 350 m thick (Dumoulin and Harris, 1994). Like unit Ol, it contains 8- to 15-m-thick shallowing-upward cycles (Vandervoort, 1985) and locally abundant trace fossils, but Oal is less fossiliferous than unit Ol and includes quartzose grainstone and ripple marks not seen in unit Ol. Common rock types in Oal are dolomitic, locally argillaceous lime mudstone and grainstone made up mainly of peloids and intraclasts with lesser bioclasts and ooids. Mud-supported strata are bioturbated, with bedding-plane feeding trails and subvertical burrows. Grain-supported rocks are planar to crossbedded with locally well developed oscillation and current ripples. Some grainstones contain 10 to 40 percent fine-sand- to silt-size non-carbonate grains, mainly quartz and lesser feldspar, with trace amounts of pyroxene, zircon, and leucoxene (Sainsbury, 1969b).

Most exposures of Oal are fault bounded, and its original depositional relations with other units in the York Mountains are uncertain. Sainsbury (1969b) reported that Oal conformably underlies unit Ol, but megafossil and conodont data suggest that the upper part of Oal is coeval with much of unit Ol. Unit Oal is chiefly of Early Ordovician (Tremadoc-early Arenig) age; the tightest ages are based on conodonts (table A–1). The oldest conodonts represent the Ro. manitouensis Zone, and are older than any definitively dated faunas known from unit Ol. Younger collections in Oal, however, include those of Mac. dianae Zone age and overlap ages determined for unit Ol. Sparse megafossils in Oal include brachiopods, gastropods, and trilobite fragments (Sainsbury, 1969b); echinoderm debris, calcareous sponge spicules, and possible calcispheres were noted in thin sections. Various types of stromatolites occur locally and form biostromes as much as 5 m thick (Sainsbury, 1969b; Vandervoort, 1985).

Lithologic and fossil data indicate that Oal was deposited in a range of subtidal to supratidal settings within a deepening-upward regime (Dumoulin and Harris, 1994); overall, Oal appears to have formed in
somewhat shallower and more agitated water than unit Ol. Conodonts in Oal are scarcer and less
diverse than in unit Ol, likely because Oal accumulated more rapidly and (or) suffered more terrigenous
input. Conodont assemblages in Oal are mainly cosmopolitan but include a few Laurentian (North
American) and Siberian endemic forms (Dumoulin and Harris, 1994; Dumoulin and others, 2002; J.E.
Repetski, written communication, 2008).

Some rocks presently included in unit OPRI are similar in lithofacies, biofacies, and age to Oal
(Vandervoort, 1985; Till and Dumoulin, 1994). Unit Oal also correlates well with parts of unit Od in the
Nome Complex, the Baird Group (Tailleur and others, 1967; Dumoulin and Harris, 1994) in the western
Brooks Range (unit “Dob” of Till and others, 2008b), and the Novi Mountain Formation, lower Telsitna
Formation, and related rocks in the Farewell terrane of interior Alaska (Dumoulin and Harris, 1994;
Dumoulin and others, 2002). Equivalent to unit “Oal” of Sainsbury (1969a,b, 1972). GRI Source Map ID
75659 (SIM-3131).

OPRI - Limestone and dolomitic limestone (Ordovician to Proterozoic)

Light-gray- to grayish-orange-weathering, medium-light-gray to medium-dark-gray limestone and
dolomitic limestone that occurs widely in western, central, and northern parts of the Teller quadrangle.
The unit forms low outcrops and extensive areas of rubble and is locally intruded by gabbro (unit PZgb of
this map; Sainsbury, 1972). Most exposures of OPRI are fault bounded, but in western Teller
quadrangle, it may depositionally overlie unit OPRT (Sainsbury, 1969b, 1972). Beds are even to irregular
and mostly 2 to 30 cm thick. Much of the unit is parallel laminated, but crossbedding occurs locally and
some intervals are bioturbated. Other sedimentary features include fenestral fabric and intraclast
conglomerate with clasts as much as 5 cm long. Lime mudstone, in part dolomitic and (or) argillaceous,
is the main lithology in OPRI; quartz silt to very fine sand makes up as much as 20 percent of some
samples. Minor to trace amounts of chert, zircon, pyroxene, and antigorite(?) also occur in silty lime
mudstone, suggesting that mafic rocks contributed detritus to this unit (Sainsbury, 1969b). Grainstone,
composed mainly of intraclasts, peloids and rare bioclasts, is a notable subordinate lithology.

Unit OPRI contains rocks of more than one age. Sainsbury (1972) considered much of this unit to be
Precambrian, but subsequent paleontological studies indicated that at least some strata are Ordovician.
Unit OPRI has produced dated fossil assemblages (mostly conodonts) at more than 10 localities (table
A–1; T. Carr and T. Hudson, written communication, 1982; Vandervoort, 1985; Till and Dumoulin, 1994;
Toro and others, 2006). A few collections consist only of poorly preserved conodonts, chitinozoans, or
acrotretid brachiopods that merely indicate broad, mainly Paleozoic age ranges, but several conodont
assemblages are tightly dated as early-middle Early Ordovician (table A–1) and correlate well with
faunas from units Oal and Ol. The gabbro that intruded OPRI, however, is earliest Cambrian (unit PZgb;
Amato and others, 2009), which constrains the age of at least part of the unit to Early Cambrian or older.

Metamorphic grade and degree of deformation vary within OPRI. Some samples appear
unmetamorphosed and undeformed in thin section, whereas other samples contain layers rich in
metamorphic white mica, are recrystallized, and have a phyllitic or schistose fabric. CAI values of
conodont collections from this unit are mostly 4–4.5, but are 5 and 6 at several localities (table A–1);
these values indicate that host rocks reached temperatures of 190 to >360 °C (table A–2). Relations
between variations in CAI values, metamorphic textures, and structural level have not been documented.

Lithofacies and biofacies of Ordovician strata in OPRI match particularly well with those of unit Oal. Unit
OPRI also correlates with parts of unit Ol, the Baird Group (Tailleur and others, 1967; Dumoulin and
Harris, 1994) in the western Brooks Range (unit “Dob” of Till and others, 2008b), and the Novi Mountain
Formation, lower Telsitna Formation, and related rocks in the Farewell terrane (Dumoulin and Harris,
1994; Dumoulin and others, 2002). Equivalent to units “pOt” and “pOl” of Sainsbury (1969a), “pOal”,

OPRt - Sandstone, siltstone, and limestone (Ordovician to Proterozoic)

Gray- to orange-weathering, gray to brown, locally calcareous sandstone to siltstone, interbedded with gray to black mudstone and local limestone, exposed in western Teller quadrangle. Beds are typically =5 cm thick (20 cm maximum). Outcrop features, which include climbing ripples, crossbeds, parallel and convolute laminae, and graded beds, suggest a turbidite origin. Sandstone is very fine to coarse grained; some beds contain black shale fragments 1 to 2 mm long. Sand and silt clasts are angular to subrounded and consist of quartz, feldspar, sedimentary and metamorphic lithic grains, mica, chlorite, and minor tourmaline and zircon. Limestone is fine grained, ferroan, and contains as much as 10 percent silt to medium-sand-size grains of quartz and feldspar. In thin section, samples of OPRt appear recrystallized but only mildly deformed. Sainsbury (1969b, 1972) suggested that OPRt depositionally underlies unit OPRl; its contact with unit Ml is a fault.

Unit OPRt likely includes rocks of more than one age. The unit was intruded by gabbro (unit PZgb of this map; Sainsbury, 1972) that at one locality in the northeastern part of the outcrop belt of OPRt has been dated as earliest Cambrian (Amato and others, 2009). However, southern exposures of OPRt produced a single conodont of middle Early-Late Ordovician age at one site (table A–1; Till and Dumoulin, 1994) and conodont fragments of indeterminate Cambrian-Triassic age at two other sites (table A–1; T. Carr and T. Hudson, written communication, 1982). A detrital zircon sample of sandstone from eastern exposures has a major peak in cumulative probability distribution at 550 Ma and several other notable peaks between 640 and 720 Ma (J. Toro, written communication, 2006, 2007). The 550 Ma peak may include zircons derived from the gabbros (unit PZgb) or their volcanic equivalents. Unit OPRt, therefore, is in part Proterozoic (pre-intrusion of gabbros), and in part Ordovician or younger (based on fossil data).

Unit OPRt could correlate, at least in part, with Middle Ordovician-Lower Silurian graptolitic argillite and turbidites (Magik Group of Martin, 1970) exposed south of Cape Lisburne (Grantz and others, 1983; Moore and others, 1994, 2002; Harris and others, 1995). Metasandstone in the Magik Group has a range of compositions (Dumoulin, 2001; Moore and others, 2002) that are broadly similar to those observed in OPRt but the metasandstone differs in containing more chert, including grains of radiolarian chert not seen in OPRt. Equivalent to parts of “pOs” of Sainsbury (1969b) and “pCs” of Sainsbury (1972). GRI Source Map ID 75659 (SIM-3131).

OPRp - Phyllite (Ordovician to Proterozoic)

Fine-grained, mainly pelitic and (or) calcareous phyllite exposed in west-central Teller quadrangle. Unit crops out on creeks, weathers gray to grayish-brown, and is layered and locally finely laminated. The phyllitic foliation surface is crenulated. Gray-weathering material is sericite-rich; brown-weathering rocks are calcareous. In thin section, grain size, composition, and oriented lenses of sericite and opaques define foliation. Thin sericitic layers alternate with layers that contain interlocking crystals of calcite that are matrix to disseminated rounded to subrounded plagioclase and quartz grains. Locally, carbonate grains are stained with iron oxide. No fossils have been found, but OPRp was intruded by gabbro (unit PZgb of this map) that crystallized in the earliest Cambrian (Amato and others, 2009). Unit PZPRp may be a more deformed and metamorphosed correlative of OPRt. Equivalent to parts of units “pOs” of Sainsbury (1969a, b) and “pCs” of Sainsbury (1972). GRI Source Map ID 75659 (SIM-3131).
PRn - Metagranitic rocks (Late Proterozoic)

Pale-gray to pale-greenish-tan, locally green-weathering rubble crop and outcrop of small granitic, granodioritic, and tonalitic orthogneiss bodies. Weakly foliated to well-foliated, fine- to coarse-grained, with foliation defined by weak to strong alignment of micas. Coarsest grained varieties may contain lozenge-shaped feldspar grains and thin, millimeter-thick lenses of quartz that also parallel foliation. Plagioclase, quartz, ± microcline are dominant phases; chlorite, biotite, and white mica are minor phases, and are associated with epidote, garnet, and calcite at some localities. Accessory phases include opaque oxides, zircon, apatite, allanite, and titanite. Phengitic white mica compositions in microcline-bearing orthogneiss bodies are consistent with crystallization at blueschist-facies conditions (Evans and Patrick, 1987). In outcrop, foliation parallels surrounding schists of the Nome Complex; the metagranitic rocks were apparently folded in with metasedimentary rocks of the Nome Complex during the Mesozoic. Detrital zircons from metasedimentary rocks of unit Ocs collected immediately adjacent to a body of <n in east-central Nome quadrangle include a significant 600-Ma population, younger than the metagranitic rock (669±5 Ma, table 3; locality 3, sh. 2) (Till and others, 2006). Late Proterozoic intrusive age based on several U-Pb zircon analyses that range from approximately 665 to 685 Ma (including errors) (table 3; Patrick and McClelland, 1995; Amato and Wright, 1998; Till and others, 2006). Equivalent to parts of unit “pCPzg” of Bundtzen and others (1994) and unit “pCdog” and parts of unit “pCPzuog” of Amato and Miller (2004). GRI Source Map ID 75659 (SIM-3131).

Pro - Orthogneiss (Proterozoic)

Pale-gray-, tan- and orangish-tan-weathering outcrops and rubble fields of foliated and unfoliated metagranitic rocks that form a large, tabular, concordant body within high-grade rocks of the Kigluaik Mountains. Called the “Thompson Creek orthogneiss” after exposures in Nome D–1 quadrangle (Till, 1980; Amato and Miller, 2004), the rock is syenogranite to monzogranite in composition (Streckeisen, 1976). Potassium-feldspar, plagioclase, and biotite are locally aligned in foliation; quartz and biotite lenses or layers up to a centimeter thick also parallel foliation. Allanite is locally 1 to 2 percent of the rock and is zoned with brown cores and orange rims; accessory zircon is also present. Quartz amphibolite layers that are parallel to metamorphic foliation in the orthogneiss are 1–2 m thick. Amato and Miller (2004) show the Thompson Creek orthogneiss on both the north and south flank of the antiform in the core of the Kigluaik Mountains (their unit “pCtog”). Orthogneiss yielded U-Pb zircon ages of 555±15 Ma (Amato and Wright, 1998) and 565±6 Ma (Amato, 2004). GRI Source Map ID 75659 (SIM-3131).

PRv - Metavolcanic rocks (Proterozoic)

Foliated lens- to sill-shaped bodies in western Bendeleben Mountains exposed in outcrop and rubble fields. Unit is up to 50 m thick. Very fine grain size and variation in abundance and relative proportion of biotite and hornblende suggest a volcanic protolith (Amato and others, 2009). Foliation is defined by the parallel alignment of biotite and feldspar. Grain size varies from layer to layer locally. Contacts and internal foliation are conformable to the foliation of the enclosing metamorphic rocks where exposed. These are the oldest dated rocks on Seward Peninsula, having yielded a U-Pb zircon age of 870 Ma (Gottlieb and Amato, 2007, 2008; Amato and others, 2009). GRI Source Map ID 75659 (SIM-3131).
GRI Source Map Information

Bedrock Geologic Map - Seward Peninsula (SIM-3131)

SIM-3131 Correlation of Map Units

Extracted from: (SIM-3131).
SIM-3131 Index Map

Extracted from: (SIM-3131).

SIM-3131 Map Legend

Extracted from: (SIM-3131).

SIM-3131 Report

A PDF of the companion report for SIM-3131 is available at the following link: Report.
SIM-3131 References

Amato, J.M., Miller, E.L., and Gehrels, George, 2003a, Lower Paleozoic through Archean detrital zircon ages from metasedimentary rocks of the Nome Group, Seward Peninsula, Alaska [abs.]: EOS Transactions of the American Geophysical Union, v. 84, no. 46, abstract T31F-0891.

Potter, A.W., 1984, Paleobiogeographical relations of Late Ordovician brachiopods from the York and Nixon Fork terranes, Alaska [abs.]: Geological Society of America Abstracts with Programs, v. 16, no. 6, p. 626.

Ross, R.J., Jr., Adler, F.J., Amsden, T.W., Bergstrom, D., Bergstrom, S.M., Carter, C., Churkin, M.,
J., Jr., Potter, A.W., Rader, E.K., Repetski, J.E., Shaver, R.H., Thompson, T.L., and Webers, G.F.,
1982, The Ordovician System in the United States; Correlation chart and explanatory notes: International
Union of Geological Sciences Publication 12, 73 p., 3 sheets.

Ryherd, T.J., Carter, C., and Churkin, M., Jr., 1995, Middle through Upper Ordovician graptolite
biostratigraphy of the Deceit Formation, northern Seward Peninsula, Alaska [abs.]: Geological Society of
America Abstracts with Programs, v. 27, no. 5, p. 75.

sequence, northern Seward Peninsula, Alaska [abs.], in Tailléur, I.L., and Weimer, Paul, eds., Alaskan
North Slope geology: Bakersfield, Calif., Pacific Section, Society of Economic Paleontologists and

Sainsbury, C.L., 1969a, Geologic map of the Teller B-4 and southern part of the Teller C-4 quadrangles,
western Seward Peninsula, Alaska: U.S. Geological Survey Miscellaneous Investigations Map I-572,
scale 1:63,360.

Sainsbury, C.L., 1969b, Geology and ore deposits of the central York Mountains, Seward Peninsula,

Sainsbury, C.L., 1972, Geologic map of the Teller quadrangle, western Seward Peninsula, Alaska: U.S.
Geological Survey Miscellaneous Investigations Map I-685, 4 p., scale 1:250,000.

Sainsbury, C.L., 1974, Geologic map of the Bendeleben 1:250,000 quadrangle, Seward Peninsula
Alaska: Golden, Colo., Air Samplex, 31 p., 1 sheet, scale 1:250,000. [Prepared in cooperation with the

C52–C57.

Sainsbury, C.L., Hummel, C.L., and Hudson, T., 1972, Reconnaissance geologic map of the Nome
scale 1:250,000.

Schrader, F.C., 1902, Geologic section of the Rocky Mountains in northern Alaska: Geological Society

401-407.

Streckeisen, A., 1976, To each plutonic rock its proper name: Earth Science Reviews, v. 12, p. 1–33.

Extracted from: (SIM-3131).
Bedrock Geologic Map Data - Seward Peninsula (OF-2009-1254)

OF-2009-1254 GIS Data

The digital data for the preliminary bedrock geologic map of the Seward Peninsula, Alaska (OF-2009-1254) are available for download at the following link: GIS Data.

OF-2009-1254 References

Extracted from: (OF-2009-1254).
ARDF Bendeleben Quadrangle (OF-99-3321)

OF-99-3321 ARDF Report

The Alaska Resource Data File (ARDF) report for the Bendeleben Quadrangle, Alaska (OF-99-3321) is available for download at the following link: Report PDF.

OF-99-3321 ARDF Data

The Alaska Resource Data File (ARDF) data for the Bendeleben Quadrangle, Alaska (OF-99-3321) are available for download at the following link: Data.

OF-99-3321 Index Map

Extracted from: (OF-99-3321).
Distribution of mineral occurrences in the Bendeleben 1:250,000-scale quadrangle, western Alaska

Extracted from: (OF-99-3321).

OF-99-3321 References

Burand, W.M., 1957, The Hannum Creek lead deposit: Territory of Alaska, Department of Mines, internal memorandum, 4 p.

Roehm, J.C., 1941, Preliminary report on certain potential placer mining areas on Seward Peninsula - economic aspects and problems: Territory of Alaska, Department of Mines, unpublished manuscript, 146 p.

Extracted from: (OF-99-3321).
ARDF Kotzebue Quadrangle (OF-99-579)

OF-99-579 ARDF Report

The Alaska Resource Data File (ARDF) report for the Kotzebue Quadrangle, Alaska (OF-99-579) is available for download at the following link: Report PDF.

OF-99-579 ARDF Data

The Alaska Resource Data File (ARDF) data for the Kotzebue Quadrangle, Alaska (OF-99-579) are available for download at the following link: Data.

OF-99-579 Index Map

Extracted from: (OF-99-579).
OF-99-579 Mineral Occurence Map

Distribution of mineral occurrences in the Kotzebue 1:250,000-scale quadrangle, northwestern Alaska

Extracted from: [OF-99-579](#).

OF-99-579 References

Extracted from: (OF-99-579).
ARDF Teller Quadrangle (OF-98-3281)

OF-98-3281 ARDF Report

The Alaska Resource Data File (ARDF) report for the Teller Quadrangle, Alaska (OF-98-3281) is available for download at the following link: Report PDF.

OF-98-3281 ARDF Data

The Alaska Resource Data File (ARDF) data for the Teller Quadrangle, Alaska (OF-98-3281) are available for download at the following link: Data.

OF-98-3281 Index Map

Extracted from: (OF-98-3281).
Distribution of mineral occurrences in the Teller 1:250,000-scale quadrangle, western Alaska

Extracted from: (OF-98-3281).

OF-98-3281 References

Cook Inlet Region, Inc., 1985, Kelly Creek prospect; internal report, Anchorage.

Marrs, C.D., and Ivey, J.A., 1984, 1984 Prospect evaluation project; Kelly Creek (Fox claims); Anchorage, Alaska, Anaconda Minerals Company internal report (held by Cook Inlet Region, Inc., Anchorage, Alaska).

Puchner, C.C., 1987, Geology, alteration, and mineralization of the Kougarok Sn deposit, Seward Peninsula, Alaska; Discussion reply: Economic Geology, v. 82, p. 2201-2204.

Reid, J.C., 1987, Granites related to tin mineralization at the Kougarok [Sn (Ta, Nb)] prospect, Seward Peninsula, Alaska; subvolcanic analogues to topaz rhyolites [abs.]: Geological Society of America, Abstracts with Programs, v. 19, no. 7, p. 815.

Sainsbury, C.L., 1987, Geology, alteration, and mineralization of the Kougarok Sn deposit, Seward Peninsula, Alaska; Discussion: Economic Geology, v. 82, p. 2199-2200.

Texasgulf, Inc., 1979, Logs for diamond drill holes TG 1, TG 2, and TG 3, Lost River Mine area; unpublished data submitted to Lost River Mining Corporation, Toronto, Canada.

Extracted from: (OF-98-3281).
Alaska Radiometric Ages (Unpublished)

Alaska Radiometric Ages Data

The data set consists of radiometric ages of rocks or minerals sampled from Alaska. The data were collected from professional publications and/or received from researchers and used by permission. The GRI Digital Geologic Map for Bering Land Bridge National Preserve (BELA) utilized data from the Bendeleben, Kotzebue, Shishmaref, and Teller quadrangles. The U.S. Geological Survey Alaska radiometric ages data (unpublished) are available for download at the following link: Data
GRI Digital Data Credits

This document was developed and completed by Ron Karpilo (Colorado State University) for the NPS Geologic Resources Division (GRD) Geologic Resources Inventory (GRI) Program. Quality control of this document by Jim Chappell (Colorado State University).

The information in this document was compiled from GRI source maps, and intended to accompany the digital geologic-GIS map and other digital data for Bering Land Bridge National Preserve, Alaska (BELA) developed by Ron Karpilo (Colorado State University) (see the GRI Digital Maps and Source Map Citations section of this document for all sources used by the GRI in the completion of this document and related GRI digital geologic-GIS map).

GRI finalization by Jim Chappell (Colorado State University).

GRI program coordination and scoping provided by Bruce Heise and Tim Connors (NPS GRD, Lakewood, Colorado).